ﻻ يوجد ملخص باللغة العربية
Magnetic skyrmions are chiral spin structures that have recently been observed at room temperature (RT) in multilayer thin films. Their topological stability should enable high scalability in confined geometries - a sought-after attribute for device applications. While umpteen theoretical predictions have been made regarding the phenomenology of sub-100 nm skyrmions confined in dots, in practice their formation in the absence of an external magnetic field and evolution with confinement remain to be established. Here we demonstrate the confinement-induced stabilization of sub-100 nm RT skyrmions at zero field (ZF) in Ir/Fe(x)/Co(y)/Pt nanodots over a wide range of magnetic and geometric parameters. The ZF skyrmion size can be as small as ~50 nm, and varies by a factor of 4 with dot size and magnetic parameters. Crucially, skyrmions with varying thermodynamic stability exhibit markedly different confinement phenomenologies. These results establish a comprehensive foundation for skyrmion phenomenology in nanostructures, and provide immediate directions for exploiting their properties in nanoscale devices.
Magnetic skyrmions are nanoscale topological spin structures offering great promise for next-generation information storage technologies. The recent discovery of sub-100 nm room temperature (RT) skyrmions in several multilayer films has triggered vig
Magnetic skyrmions are nanometric spin textures of outstanding potential for spintronic applications due to unique features governed by their non-trivial topology. It is well known that skyrmions of definite chirality are stabilized by the Dzyaloshin
Magnetic skyrmions are nanoscale spin structures recently discovered at room temperature (RT) in multilayer films. Employing their novel topological properties towards exciting technological prospects requires a mechanistic understanding of the excit
Skyrmions are topologically protected, two-dimensional, localized hedgehogs and whorls of spin. Originally invented as a concept in field theory for nuclear interactions, skyrmions are central to a wide range of phenomena in condensed matter. Their r
Sub-100 nm nanomagnets not only are technologically important, but also exhibit complex magnetization reversal behaviors as their dimensions are comparable to typical magnetic domain wall widths. Here we capture magnetic fingerprints of 1 billion Fe