ترغب بنشر مسار تعليمي؟ اضغط هنا

Phenomenology of a First Order Dark State Phase Transition

78   0   0.0 ( 0 )
 نشر من قبل Dietrich Roscher
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dark states are stationary states of a dissipative, Lindblad-type time evolution with zero von Neumann entropy, therefore representing examples of pure, steady quantum states. Non-equilibrium dynamics featuring a dark state recently gained a lot of attraction since their implementation in the context of driven-open quantum systems represents a viable possibility to engineer unique, pure states. In this work, we analyze a driven many-body spin system, which undergoes a transition from a dark steady state to a mixed steady state as a function of the driving strength. This transition connects a zero entropy (dark) state with a finite entropy (mixed) state and thus goes beyond the realm of equilibrium statistical mechanics and becomes of genuine nonequilibrium character. We analyze the relevant long wavelength fluctuations driving this transition in a regime where the system performs a discontinuous jump from a dark to a mixed state by means of the renormalization group. This allows us to approach the nonequilibrium dark state transition and identify similarities and clear differences to common, equilibrium phase transitions, and to establish the phenomenology for a first order dark state phase transition.



قيم البحث

اقرأ أيضاً

The physics of highly excited Rydberg atoms is governed by blockade or exclusion interactions that hinder the excitation of atoms in the proximity of a previously excited one. This leads to cooperative effects and a relaxation dynamics displaying spa ce-time heterogeneity similar to what is observed in the relaxation of glass-forming systems. Here we establish theoretically the existence of a glassy dynamical regime in an open Rydberg gas, associated with phase coexistence at a first-order transition in dynamical large deviation functions. This transition occurs between an active phase of low density in which dynamical processes take place on short timescales, and an inactive phase in which excited atoms are dense and the dynamics is highly arrested. We perform a numerically exact study and develop a mean-field approach that allows to understand the mechanics of this phase transition. We show that radiative decay --- which becomes experimentally relevant for long times --- moves the system away from dynamical phase coexistence. Nevertheless, the dynamical phase transition persists and causes strong fluctuations in the observed dynamics.
We theoretically investigate the critical properties of a single driven-dissipative nonlinear photon mode. In a well-defined thermodynamical limit of large excitation numbers, the exact quantum solution describes a first-order phase transition in the regime where semiclassical theory predicts optical bistability. We study the behavior of the complex spectral gap associated with the Liouvillian superoperator of the corresponding master equation. We show that in this limit the Liouvillian gap vanishes exponentially and that the bimodality of the photon Wigner function disappears. The connection between the considered thermodynamical limit of large photon numbers for the single-mode cavity and the thermodynamical limit of many cavities for a driven-dissipative Bose-Hubbard system is discussed.
We investigate the evolution of string order in a spin-1 chain following a quantum quench. After initializing the chain in the Affleck-Kennedy-Lieb-Tasaki state, we analyze in detail how string order evolves as a function of time at different length scales. The Hamiltonian after the quench is chosen either to preserve or to suddenly break the symmetry which ensures the presence of string order. Depending on which of these two situations arises, string order is either preserved or lost even at infinitesimal times in the thermodynamic limit. The fact that non-local order may be abruptly destroyed, what we call string-order melting, makes it qualitatively different from typical order parameters in the manner of Landau. This situation is thoroughly characterized by means of numerical simulations based on matrix product states algorithms and analytical studies based on a short-time expansion for several simplified models.
An ultralow-temperature binary mixture of Bose-Einstein condensates adsorbed at an optical wall can undergo a wetting phase transition in which one of the species excludes the other from contact with the wall. Interestingly, while hard-wall boundary conditions entail the wetting transition to be of first order, using Gross-Pitaevskii theory we show that first-order wetting as well as critical wetting can occur when a realistic exponential optical wall potential (evanescent wave) with a finite turn-on length $lambda$ is assumed. The relevant surface excess energies are computed in an expansion in $lambda/xi_i$, where $xi_i$ is the healing length of condensate $i$. Experimentally, the wetting transition may best be approached by varying the interspecies scattering length $a_{12}$ using Feshbach resonances. In the hard-wall limit, $lambda rightarrow 0$, exact results are derived for the prewetting and first-order wetting phase boundaries.
We study a stochastic lattice gas of particles in one dimension with strictly finite-range interactions that respect the fracton-like conservation laws of total charge and dipole moment. As the charge density is varied, the connectivity of the system s charge configurations under the dynamics changes qualitatively. We find two distinct phases: Near half filling the system thermalizes subdiffusively, with almost all configurations belonging to a single dynamically connected sector. As the charge density is tuned away from half filling there is a phase transition to a frozen phase where locally active finite bubbles cannot exchange particles and the system fails to thermalize. The two phases exemplify what has recently been referred to as weak and strong Hilbert space fragmentation, respectively. We study the static and dynamic scaling properties of this weak-to-strong fragmentation phase transition in a kinetically constrained classical Markov circuit model, obtaining some conjectured exact critical exponents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا