ﻻ يوجد ملخص باللغة العربية
Rydberg chains provide an appealing platform for probing conformal field theories (CFTs) that capture universal behavior in a myriad of physical settings. Focusing on a Rydberg chain at the Ising transition separating charge density wave and disordered phases, we establish a detailed link between microscopics and low-energy physics emerging at criticality. We first construct lattice incarnations of primary fields in the underlying Ising CFT including chiral fermions -- a nontrivial task given that the Rydberg chain Hamiltonian does not admit an exact fermionization. With this dictionary in hand, we compute correlations of microscopic Rydberg operators, paying special attention to finite, open chains of immediate experimental relevance. We further develop a method to quantify how second-neighbor Rydberg interactions tune the sign and strength of four-fermion couplings in the Ising CFT. Finally, we determine how the Ising fields evolve when four-fermion couplings drive an instability to Ising tricriticality. Our results pave the way to a thorough experimental characterization of Ising criticality in Rydberg arrays, and can also be exploited to design novel higher-dimensional phases based on coupled critical chains.
We study the energy and entanglement dynamics of $(1+1)$D conformal field theories (CFTs) under a Floquet drive with the sine-square deformed (SSD) Hamiltonian. Previous work has shown this model supports both a non-heating and a heating phase. Here
We describe the zero-temperature phase diagram of a model of a two-dimensional square-lattice array of neutral atoms, excited into Rydberg states and interacting via strong van der Waals interactions. Using the density-matrix renormalization group al
Precise control and study of molecules is challenging due to the variety of internal degrees of freedom and local coordinates that are typically not controlled in an experiment. Employing quantum gas microscopy to position and resolve the atoms in Ry
We propose a method of computing and studying entanglement quantities in non-Hermitian systems by use of a biorthogonal basis. We find that the entanglement spectrum characterizes the topological properties in terms of the existence of mid-gap states
The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior in the vicinity of quantum phase transitions (QPTs). It is now well understood for one-dimensional quantum matter. Higher-dimensional systems, however, remain a challenge