ﻻ يوجد ملخص باللغة العربية
Due to the unstable nature of minimax game between generator and discriminator, improving the performance of GANs is a challenging task. Recent studies have shown that selected high-quality samples in training improve the performance of GANs. However, sampling approaches which discard samples show limitations in some aspects such as the speed of training and optimality of the networks. In this paper we propose unrealistic feature suppression (UFS) module that keeps high-quality features and suppresses unrealistic features. UFS module keeps the training stability of networks and improves the quality of generated images. We demonstrate the effectiveness of UFS module on various models such as WGAN-GP, SNGAN, and BigGAN. By using UFS module, we achieved better Frechet inception distance and inception score compared to various baseline models. We also visualize how effectively our UFS module suppresses unrealistic features through class activation maps.
Image extension models have broad applications in image editing, computational photography and computer graphics. While image inpainting has been extensively studied in the literature, it is challenging to directly apply the state-of-the-art inpainti
The advent of generative adversarial networks (GAN) has enabled new capabilities in synthesis, interpolation, and data augmentation heretofore considered very challenging. However, one of the common assumptions in most GAN architectures is the assump
When trained on multimodal image datasets, normal Generative Adversarial Networks (GANs) are usually outperformed by class-conditional GANs and ensemble GANs, but conditional GANs is restricted to labeled datasets and ensemble GANs lack efficiency. W
Recent improvements in generative adversarial visual synthesis incorporate real and fake image transformation in a self-supervised setting, leading to increased stability and perceptual fidelity. However, these approaches typically involve image augm
Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this through deriving backpropagation signals through a competitive process involving a pair of networks. The