ترغب بنشر مسار تعليمي؟ اضغط هنا

Perpetual emulation threshold of PT-symmetric Hamiltonians

78   0   0.0 ( 0 )
 نشر من قبل Dimitris Trypogeorgos
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a technique to emulate a two-level PT-symmetric spin Hamiltonian, replete with gain and loss, using only the unitary dynamics of a larger quantum system. This we achieve by embedding the two-level system in question in a subspace of a four-level Hamiltonian. Using an textit{amplitude recycling} scheme that couples the levels exterior to the PT-symmetric subspace, we show that it is possible to emulate the desired behaviour of the PT-symmetric Hamiltonian without depleting the exterior, reservoir levels. We are thus able to extend the emulation time indefinitely, despite the non-unitary PT dynamics. We propose a realistic experimental implementation using dynamically decoupled magnetic sublevels of ultracold atoms.

قيم البحث

اقرأ أيضاً

Non-hermitian, $mathcal{PT}$-symmetric Hamiltonians, experimentally realized in optical systems, accurately model the properties of open, bosonic systems with balanced, spatially separated gain and loss. We present a family of exactly solvable, two-d imensional, $mathcal{PT}$ potentials for a non-relativistic particle confined in a circular geometry. We show that the $mathcal{PT}$ symmetry threshold can be tuned by introducing a second gain-loss potential or its hermitian counterpart. Our results explicitly demonstrate that $mathcal{PT}$ breaking in two dimensions has a rich phase diagram, with multiple re-entrant $mathcal{PT}$ symmetric phases.
A Bose-Einstein condensate in a double-well potential features stationary solutions even for attractive contact interaction as long as the particle number and therefore the interaction strength do not exceed a certain limit. Introducing balanced gain and loss into such a system drastically changes the bifurcation scenario at which these states are created. Instead of two tangent bifurcations at which the symmetric and antisymmetric states emerge, one tangent bifurcation between two formerly independent branches arises [D. Haag et al., Phys. Rev. A 89, 023601 (2014)]. We study this transition in detail using a bicomplex formulation of the time-dependent variational principle and find that in fact there are three tangent bifurcations for very small gain-loss contributions which coalesce in a cusp bifurcation.
We investigate dipolar Bose-Einstein condensates in a complex external double-well potential that features a combined parity and time-reversal symmetry. On the basis of the Gross-Pitaevskii equation we study the effects of the long-ranged anisotropic dipole-dipole interaction on ground and excited states by the use of a time-dependent variational approach. We show that the property of a similar non-dipolar condensate to possess real energy eigenvalues in certain parameter ranges is preserved despite the inclusion of this nonlinear interaction. Furthermore, we present states that break the PT symmetry and investigate the stability of the distinct stationary solutions. In our dynamical simulations we reveal a complex stabilization mechanism for PT-symmetric, as well as for PT-broken states which are, in principle, unstable with respect to small perturbations.
PT-symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to suppor t ground states with vortices. Due to the particle exchange with the environment transport phenomena through ultracold gases with vortices can be studied. We find that even strongly interacting rotating systems support stable PT-symmetric ground states, sustaining a current parallel and perpendicular to the vortex cores. The vortices move through the non-uniform particle density and leave or enter the condensate through its borders creating the required net current.
We study the case of $mathcal{PT}$-symmetric perturbations of Hermitian Hamiltonians with degenerate eigenvalues using the example of a triple-well system. The degeneracy complicates the question, whether or not a stationary current through such a sy stem can be established, i.e. whether or not the $mathcal{PT}$-symmetric states are stable. It is shown that this is only the case for perturbations that do not couple to any of the degenerate states. The physical explanation for the inhibition of stable currents is discussed. However, introducing an on-site interaction restores the capability to support stable currents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا