ﻻ يوجد ملخص باللغة العربية
We describe a technique to emulate a two-level PT-symmetric spin Hamiltonian, replete with gain and loss, using only the unitary dynamics of a larger quantum system. This we achieve by embedding the two-level system in question in a subspace of a four-level Hamiltonian. Using an textit{amplitude recycling} scheme that couples the levels exterior to the PT-symmetric subspace, we show that it is possible to emulate the desired behaviour of the PT-symmetric Hamiltonian without depleting the exterior, reservoir levels. We are thus able to extend the emulation time indefinitely, despite the non-unitary PT dynamics. We propose a realistic experimental implementation using dynamically decoupled magnetic sublevels of ultracold atoms.
Non-hermitian, $mathcal{PT}$-symmetric Hamiltonians, experimentally realized in optical systems, accurately model the properties of open, bosonic systems with balanced, spatially separated gain and loss. We present a family of exactly solvable, two-d
A Bose-Einstein condensate in a double-well potential features stationary solutions even for attractive contact interaction as long as the particle number and therefore the interaction strength do not exceed a certain limit. Introducing balanced gain
We investigate dipolar Bose-Einstein condensates in a complex external double-well potential that features a combined parity and time-reversal symmetry. On the basis of the Gross-Pitaevskii equation we study the effects of the long-ranged anisotropic
PT-symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to suppor
We study the case of $mathcal{PT}$-symmetric perturbations of Hermitian Hamiltonians with degenerate eigenvalues using the example of a triple-well system. The degeneracy complicates the question, whether or not a stationary current through such a sy