ﻻ يوجد ملخص باللغة العربية
We investigate dipolar Bose-Einstein condensates in a complex external double-well potential that features a combined parity and time-reversal symmetry. On the basis of the Gross-Pitaevskii equation we study the effects of the long-ranged anisotropic dipole-dipole interaction on ground and excited states by the use of a time-dependent variational approach. We show that the property of a similar non-dipolar condensate to possess real energy eigenvalues in certain parameter ranges is preserved despite the inclusion of this nonlinear interaction. Furthermore, we present states that break the PT symmetry and investigate the stability of the distinct stationary solutions. In our dynamical simulations we reveal a complex stabilization mechanism for PT-symmetric, as well as for PT-broken states which are, in principle, unstable with respect to small perturbations.
A Bose-Einstein condensate in a double-well potential features stationary solutions even for attractive contact interaction as long as the particle number and therefore the interaction strength do not exceed a certain limit. Introducing balanced gain
We investigate vortex excitations in dilute Bose-Einstein condensates in the presence of complex $mathcal{PT}$-symmetric potentials. These complex potentials are used to describe a balanced gain and loss of particles and allow for an easier calculati
We study the case of $mathcal{PT}$-symmetric perturbations of Hermitian Hamiltonians with degenerate eigenvalues using the example of a triple-well system. The degeneracy complicates the question, whether or not a stationary current through such a sy
The most important properties of a Bose-Einstein condensate subject to balanced gain and loss can be modelled by a Gross-Pitaevskii equation with an external $mathcal{PT}$-symmetric double-delta potential. We study its linear variant with a supersymm
The possibility of effectively inverting the sign of the dipole-dipole interaction, by fast rotation of the dipole polarization, is examined within a harmonically trapped dipolar Bose-Einstein condensate. Our analysis is based on the stationary state