ﻻ يوجد ملخص باللغة العربية
We report a systematic study of thickness-dependent superconductivity and carrier transport properties in exfoliated layered 2H-NbS2. Hall-effect measurements reveal 2H-NbS2 in its normal state to be a p-type metal with hole mobility of 1-3 cm2/Vs. The superconducting transition temperature is found to decrease with thickness. We find that the suppression of superconductivity is due to disorder resulting from the incorporation of atmospheric oxygen and a reduced hole density. Cross-section transmission electron microscope (TEM) imaging reveals a chemical change of NbS2 in ambient conditions, resulting in the formation of amorphous oxide layers sandwiching crystalline layered NbS2. Though few-nm-thick 2H-NbS2 completely converts to amorphous oxide in ambient conditions, PMMA encapsulation prevents further chemical change and preserves superconductivity.
Two-dimensional (2D) superconductors supply important platforms for exploring new quantum physics and high-$T_c$ superconductivity. The intrinsic superconducting properties in the 2D iron-arsenic superconductors are still unknown owing to the difficu
$mathrm{La_{1.85}Sr_{0.15}CuO_4}$/$mathrm{La_2CuO_4}$ (LSCO15/LCO) bilayers with a precisely controlled thickness of N unit cells (UCs) of the former and M UCs of the latter ([LSCO15_N/LCO_M]) were grown on (001)-oriented {slao} (SLAO) substrates wit
Simultaneous high pressure x-ray diffraction and electrical resistance measurements have been carried out on a PbO type {alpha}-FeSe0.92 compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source
The interaction between superconductivity and band topology can lead to various unconventional superconducting (SC) states, and represents a new frontier in condensed matter physics research. Recently, the transition metal dichalcogenide (TMD) system
We investigate the evolution of superconductivity with decreasing film thickness in ultrathin amorphous MoGe (a-MoGe) films using a combination of sub-Kelvin scanning tunneling spectroscopy, magnetic penetration depth measurements and magneto-transpo