ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous measurement of pressure evolution of crystal structure and superconductivity in FeSe0.92 using designer diamonds

179   0   0.0 ( 0 )
 نشر من قبل Walter Uhoya
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simultaneous high pressure x-ray diffraction and electrical resistance measurements have been carried out on a PbO type {alpha}-FeSe0.92 compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source. At ambient temperature, a structural phase transition from a tetragonal (P4/nmm) phase to an orthorhombic (Pbnm) phase is observed at 11 GPa and the Pbnm phase persists up to 74 GPa. The superconducting transition temperature (TC) increases rapidly with pressure reaching a maximum of ~28 K at ~ 6 GPa and decreases at higher pressures, disappearing completely at 14.6 GPa. Simultaneous pressure-dependent x-ray diffraction and resistance measurements at low temperatures show superconductivity only in a low pressure orthorhombic (Cmma) phase of the {alpha}-FeSe0.92. Upon increasing pressure at 10 K near TC, crystalline phases change from a mixture of orthorhombic (Cmma) and hexagonal (P63/mmc) to a high pressure orthorhombic (Pbnm) phase near 6.4 GPa where TC is maximum.



قيم البحث

اقرأ أيضاً

Recent experiments showed the distinct observations on the transition metal ditelluride NiTe$_2$ under pressure: one reported a superconducting phase transition at 12 GPa, whereas another observed a sign reversal of Hall resistivity at 16 GPa without the appearance of superconductivity. To clarify the controversial experimental phenomena, we have carried out first-principles electronic structure calculations on the compressed NiTe$_2$ with structure searching and optimization. Our calculations show that the pressure can transform NiTe$_2$ from a layered P-3m1 phase to a cubic Pa-3 phase at $sim$10 GPa. Meanwhile, both the P-3m1 and Pa-3 phases possess nontrivial topological properties. The calculated superconducting $T_c$s for these two phases based on the electron-phonon coupling theory both approach 0 K. Further magnetic transport calculations reveal that the sign of Hall resistance for the Pa-3 phase is sensitive to the pressure and the charge doping, in contrast to the case of the P-3m1 phase. Our theoretical predictions on the compressed NiTe$_2$ wait for careful experimental examinations.
We report a corrected crystal structure for the CePt2In7 superconductor, refined from single crystal x-ray diffraction data. The corrected crystal structure shows a different Pt-In stacking along the c-direction in this layered material than was prev iously reported. In addition, all the atomic sites are fully occupied with no evidence of atom site mixing, resolving a discrepancy between the observed high resistivity ratio of the material and the atomic disorder present in the previous structural model The Ce-Pt distance and coordination is typical of that seen in all other reported Ce_nM_mIn_3n+2m compounds. Our band structure calculations based on the correct structure reveal three bands at the Fermi level that are more three dimensional than those previously proposed, and Density functional theory (DFT) calculations show that the new structure has a significantly lower energy.
The interaction between superconductivity and band topology can lead to various unconventional superconducting (SC) states, and represents a new frontier in condensed matter physics research. Recently, the transition metal dichalcogenide (TMD) system 2M-WS2 has been identified as a Dirac semimetal exhibiting both superconductivity with the highest Tc = 8.5 K among all the TMD materials and topological surface states with a single Dirac cone. Here we report on muon spin rotation (muSR) and density functional theory studies of microscopic SC properties and the electronic structure in 2M-WS2 at ambient and under hydrostatic pressures (p_max = 1.9 GPa). The SC order parameter in 2M-WS2 is determined to have single-gap s-wave symmetry. We further show a strong negative pressure effect on Tc and on the SC gap. This may be partly caused by the pressure induced reduction of the size of the electron pocket around the Gamma-point, at which a band inversion appears up to the highest applied pressure. We also find that the superfluid density ns is very weakly affected by pressure. The absence of a strong pressure effect on the superfluid density and the absence of a correlation between ns and Tc in 2M-WS2, in contrast to the other SC TMDs Td-MoTe2 and 2H-NbSe2, is explained in terms of its location in the optimal (ambient pressure) and above the optimal (under pressure) superconducting regions of the phase diagram and its large distance to the other possible competing or cooperating orders. These results hint towards a complex nature of the superconductivity in TMDs, despite the observed s-wave order parameter.
The effects of pressure on the superconducting properties of a Bi-based layered superconductor La2O2Bi3Ag0.6Sn0.4S6, which possesses a four-layer-type conducting layer, have been studied through the electrical resistance and magnetic susceptibility m easurements. The crystal structure under pressure was examined using synchrotron X-ray diffraction at SPring-8. In the low-pressure regime, bulk superconductivity with a transition temperature Tc of ~ 4.5 K was induced by pressure, which was achieved by in-plane chemical pressure effect owing to the compression of the tetragonal structure. In the high-pressure regime above 6.4 GPa, a structural symmetry lowering was observed, and superconducting transitions with a Tc ~ 8 K were observed. Our results suggest the possible commonality on the factor essential for Tc in Bi-based superconductors with two-layer-type and four-layer-type conducting layers.
393 - X.D. Zhu , Y.P. Sun , S.B. Zhang 2009
Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2 single crystal was successfully grown via the NaCl/KCl flux method. The obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly smaller than that of 2H-TaS2 (1.208 nm). Electrical resistivity and magnetization measurements reveal that the superconductivity transition temperature of Ni0:05TaS2 is enhanced from 0.8 K (2H-TaS2) to 3.9 K. The charge-density-wave transition of the matrix compound 2H-TaS2 is suppressed in Ni0:05TaS2. The success of Ni0:05TaS2 single crystal growth via a NaCl/KCl flux demonstrates that NaCl/KCl flux method will be a feasible method for single crystal growth of the layered transition metal dichalcogenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا