ﻻ يوجد ملخص باللغة العربية
Starting with a left ideal $J$ of $L^1(G)$ we consider its annihilator $J^{perp}$ in $L^{infty}(G)$ and the generated ${rm VN}(G)$-bimodule in $mathcal{B}(L^2(G))$, ${rm Bim}(J^{perp})$. We prove that ${rm Bim}(J^{perp})=({rm Ran} J)^{perp}$ when $G$ is weakly amenable discrete, compact or abelian, where ${rm Ran} J$ is a suitable saturation of $J$ in the trace class. We define jointly harmonic functions and jointly harmonic operators and show that, for these classes of groups, the space of jointly harmonic operators is the ${rm VN}(G)$-bimodule generated by the space of jointly harmonic functions. Using this, we give a proof of the following result of Izumi and Jaworski - Neufang: the non-commutative Poisson boundary is isomorphic to the crossed product of the space of harmonic functions by $G$.
This paper is concerned with weak* closed masa-bimodules generated by A(G)-invariant subspaces of VN(G). An annihilator formula is established, which is used to characterise the weak* closed subspaces of B(L^2(G)) which are invariant under both Schur
The purpose of this short note was to outline the current status, then in 2011, of some research programs aiming at a categorification of parts of A.Connes non-commutative geometry and to provide an outlook on some possible subsequent developments in categorical non-commutative geometry.
This article is devoted to studying the non-commutative Poisson boundary associated with $Big(Bbig(mathcal{F}(mathcal{H})big), P_{omega}Big)$ where $mathcal{H}$ is a separable Hilbert space (finite or infinite-dimensional), $dim mathcal{H} > 1$, wi
We examine the common null spaces of families of Herz-Schur multipliers and apply our results to study jointly harmonic operators and their relation with jointly harmonic functionals. We show how an annihilation formula obtained in J. Funct. Anal. 26
After an introduction to some basic issues in non-commutative geometry (Gelfand duality, spectral triples), we present a panoramic view of the status of our current research program on the use of categorical methods in the setting of A.Connes non-com