ترغب بنشر مسار تعليمي؟ اضغط هنا

Formations of finite groups with the M. Hall property

75   0   0.0 ( 0 )
 نشر من قبل Alexander Bors
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The first examples of formations which are arboreous (and therefore Hall) but not freely indexed (and therefore not locally extensible) are found. Likewise, the first examples of solvable formations which are freely indexed and arboreous (and therefore Hall) but not locally extensible are constructed. Some open questions are also mentioned.



قيم البحث

اقرأ أيضاً

Throughout this paper, all groups are finite. Let $sigma ={sigma_{i} | iin I }$ be some partition of the set of all primes $Bbb{P}$. If $n$ is an integer, the symbol $sigma (n)$ denotes the set ${sigma_{i} |sigma_{i}cap pi (n) e emptyset }$. Th e integers $n$ and $m$ are called $sigma$-coprime if $sigma (n)cap sigma (m)=emptyset$. Let $t > 1$ be a natural number and let $mathfrak{F}$ be a class of groups. Then we say that $mathfrak{F}$ is $Sigma_{t}^{sigma}$-closed provided $mathfrak{F}$ contains each group $G$ with subgroups $A_{1}, ldots , A_{t}in mathfrak{F}$ whose indices $|G:A_{1}|$, $ldots$, $|G:A_{t}|$ are pairwise $sigma$-coprime. In this paper, we study $Sigma_{t}^{sigma}$-closed classes of finite groups.
In this paper, we study a group in which every 2-maximal subgroup is a Hall subgroup.
We construct several series of explicit presentations of infinite hyperbolic groups enjoying Kazhdans property (T). Some of them are significantly shorter than the previously known shortest examples. Moreover, we show that some of those hyperbolic Ka zhdan groups possess finite simple quotient groups of arbitrarily large rank; they constitute the first known specimens combining those properties. All the hyperbolic groups we consider are non-positively curved k-fold generalized triangle groups, i.e. groups that possess a simplicial action on a CAT(0) triangle complex, which is sharply transitive on the set of triangles, and such that edge-stabilizers are cyclic of order k.
In this article we present an extensive survey on the developments in the theory of non-abelian finite groups with abelian automorphism groups, and pose some problems and further research directions.
The power graph $mathcal{P}(G)$ of a finite group $G$ is the graph whose vertex set is $G$, and two elements in $G$ are adjacent if one of them is a power of the other. The purpose of this paper is twofold. First, we find the complexity of a clique-- replaced graph and study some applications. Second, we derive some explicit formulas concerning the complexity $kappa(mathcal{P}(G))$ for various groups $G$ such as the cyclic group of order $n$, the simple groups $L_2(q)$, the extra--special $p$--groups of order $p^3$, the Frobenius groups, etc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا