ﻻ يوجد ملخص باللغة العربية
The power graph $mathcal{P}(G)$ of a finite group $G$ is the graph whose vertex set is $G$, and two elements in $G$ are adjacent if one of them is a power of the other. The purpose of this paper is twofold. First, we find the complexity of a clique--replaced graph and study some applications. Second, we derive some explicit formulas concerning the complexity $kappa(mathcal{P}(G))$ for various groups $G$ such as the cyclic group of order $n$, the simple groups $L_2(q)$, the extra--special $p$--groups of order $p^3$, the Frobenius groups, etc.
In this paper we have investigated some properties of the power graph and commuting graph associated with a finite group, using their tree-numbers. Among other things, it has been shown that the simple group $L_2(7)$ can be characterized through the
Given a group $G$, we define the power graph $mathcal{P}(G)$ as follows: the vertices are the elements of $G$ and two vertices $x$ and $y$ are joined by an edge if $langle xranglesubseteq langle yrangle$ or $langle yranglesubseteq langle xrangle$. Ob
Let $G$ be a finite group and $sigma$ a partition of the set of all? primes $Bbb{P}$, that is, $sigma ={sigma_i mid iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_i$ and $sigma_icap sigma_j= emptyset $ for all $i e j$. If $n$ is an integer, we write $s
In this paper we study prime graphs of finite groups. The prime graph of a finite group $G$, also known as the Gruenberg-Kegel graph, is the graph with vertex set {primes dividing $|G|$} and an edge $p$-$q$ if and only if there exists an element of o
In this article we present an extensive survey on the developments in the theory of non-abelian finite groups with abelian automorphism groups, and pose some problems and further research directions.