ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Frame Quality Enhancement for Compressed Video

153   0   0.0 ( 0 )
 نشر من قبل Ren Yang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, ignoring the similarity between consecutive frames. In this paper, we investigate that heavy quality fluctuation exists across compressed video frames, and thus low quality frames can be enhanced using the neighboring high quality frames, seen as Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as a first attempt in this direction. In our approach, we firstly develop a Support Vector Machine (SVM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are as the input. The MF-CNN compensates motion between the non-PQF and PQFs through the Motion Compensation subnet (MC-subnet). Subsequently, the Quality Enhancement subnet (QE-subnet) reduces compression artifacts of the non-PQF with the help of its nearest PQFs. Finally, the experiments validate the effectiveness and generality of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video. The code of our MFQE approach is available at https://github.com/ryangBUAA/MFQE.git



قيم البحث

اقرأ أيضاً

The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, not considering the similarity between consec utive frames. Since heavy fluctuation exists across compressed video frames as investigated in this paper, frame similarity can be utilized for quality enhancement of low-quality frames given their neighboring high-quality frames. This task is Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as the first attempt in this direction. In our approach, we firstly develop a Bidirectional Long Short-Term Memory (BiLSTM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are the input. In MF-CNN, motion between the non-PQF and PQFs is compensated by a motion compensation subnet. Subsequently, a quality enhancement subnet fuses the non-PQF and compensated PQFs, and then reduces the compression artifacts of the non-PQF. Also, PQF quality is enhanced in the same way. Finally, experiments validate the effectiveness and generalization ability of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video. The code is available at https://github.com/RyanXingQL/MFQEv2.0.git.
In video compression, most of the existing deep learning approaches concentrate on the visual quality of a single frame, while ignoring the useful priors as well as the temporal information of adjacent frames. In this paper, we propose a multi-frame guided attention network (MGANet) to enhance the quality of compressed videos. Our network is composed of a temporal encoder that discovers inter-frame relations, a guided encoder-decoder subnet that encodes and enhances the visual patterns of target frame, and a multi-supervised reconstruction component that aggregates information to predict details. We design a bidirectional residual convolutional LSTM unit to implicitly discover frames variations over time with respect to the target frame. Meanwhile, the guided map is proposed to guide our network to concentrate more on the block boundary. Our approach takes advantage of intra-frame prior information and inter-frame information to improve the quality of compressed video. Experimental results show the robustness and superior performance of the proposed method.Code is available at https://github.com/mengab/MGANet
100 - Dewang Hou , Yang Zhao , Yuyao Ye 2021
Scaling and lossy coding are widely used in video transmission and storage. Previous methods for enhancing the resolution of such videos often ignore the inherent interference between resolution loss and compression artifacts, which compromises perce ptual video quality. To address this problem, we present a mixed-resolution coding framework, which cooperates with a reference-based DCNN. In this novel coding chain, the reference-based DCNN learns the direct mapping from low-resolution (LR) compressed video to their high-resolution (HR) clean version at the decoder side. We further improve reconstruction quality by devising an efficient deformable alignment module with receptive field block to handle various motion distances and introducing a disentangled loss that helps networks distinguish the artifact patterns from texture. Extensive experiments demonstrate the effectiveness of proposed innovations by comparing with state-of-the-art single image, video and reference-based restoration methods.
364 - Ren Yang , Radu Timofte , Jing Liu 2021
This paper reviews the first NTIRE challenge on quality enhancement of compressed video, with a focus on the proposed methods and results. In this challenge, the new Large-scale Diverse Video (LDV) dataset is employed. The challenge has three tracks. Tracks 1 and 2 aim at enhancing the videos compressed by HEVC at a fixed QP, while Track 3 is designed for enhancing the videos compressed by x265 at a fixed bit-rate. Besides, the quality enhancement of Tracks 1 and 3 targets at improving the fidelity (PSNR), and Track 2 targets at enhancing the perceptual quality. The three tracks totally attract 482 registrations. In the test phase, 12 teams, 8 teams and 11 teams submitted the final results of Tracks 1, 2 and 3, respectively. The proposed methods and solutions gauge the state-of-the-art of video quality enhancement. The homepage of the challenge: https://github.com/RenYang-home/NTIRE21_VEnh
This report describes our solution for the VATEX Captioning Challenge 2020, which requires generating descriptions for the videos in both English and Chinese languages. We identified three crucial factors that improve the performance, namely: multi-v iew features, hybrid reward, and diverse ensemble. Based on our method of VATEX 2019 challenge, we achieved significant improvements this year with more advanced model architectures, combination of appearance and motion features, and careful hyper-parameters tuning. Our method achieves very competitive results on both of the Chinese and English video captioning tracks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا