ترغب بنشر مسار تعليمي؟ اضغط هنا

The chiral Hall effect in canted ferromagnets and antiferromagnets

82   0   0.0 ( 0 )
 نشر من قبل Yuriy Mokrousov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The anomalous Hall effect has been indispensable in our understanding of numerous magnetic phenomena. This concerns both ferromagnetic materials, as well as diverse classes of antiferromagnets, where in addition to the anomalous and crystal Hall effects, the topological Hall effect in non-coplanar antiferromagnets has been a subject of intensive research in the past decades. Here, we uncover a new flavour of the anomalous Hall effect in canted spin systems. Using advanced theoretical tools we demonstrate that upon canting, the anomalous Hall effect acquires a contribution which is sensitive to the sense of imprinted vector chirality among spins. We explore the origins and basic properties of corresponding chiral Hall effect, and closely tie it to the symmetry properties of the system. Our findings suggest that the chiral Hall effect and corresponding chiral magneto-optical effects emerge as novel versatile tools in characterizing an interplay of structure and chirality in complex magnets, as well as in tracking their chiral dynamics and fluctuations.

قيم البحث

اقرأ أيضاً

We report an unconventional quantum spin Hall phase in the monolayer T$_text{d}$-WTe$_2$, which exhibits hitherto unknown features in other topological materials. The low-symmetry of the structure induces a canted spin texture in the $yz$ plane, whic h dictates the spin polarization of topologically protected boundary states. Additionally, the spin Hall conductivity gets quantized ($2e^2/h$) with a spin quantization axis parallel to the canting direction. These findings are based on large-scale quantum simulations of the spin Hall conductivity tensor and nonlocal resistances in multi-probe geometries using a realistic tight-binding model elaborated from first-principle methods. The observation of this canted quantum spin Hall effect, related to the formation of topological edge states with nontrivial spin polarization, demands for specific experimental design and suggests interesting alternatives for manipulating spin information in topological materials.
Response properties that are purely intrinsic to physical systems are of paramount importance in physics research, as they probe fundamental properties of band structures and allow quantitative calculation and comparison with experiment. For anomalou s Hall transport in magnets, an intrinsic effect can appear at the second order to the applied electric field. We show that this intrinsic second-order anomalous Hall effect is associated with an intrinsic band geometric property -- the dipole moment of Berry-connection polarizability (BCP) in momentum space. The effect has scaling relation and symmetry constraints that are distinct from the previously studied extrinsic contributions. Particularly, in antiferromagnets with $mathcal{PT}$ symmetry, the intrinsic effect dominates. Combined with first-principles calculations, we demonstrate the first quantitative evaluation of the effect in the antiferromagnet Mn$_{2}$Au. We show that the BCP dipole and the resulting intrinsic second-order conductivity are pronounced around band near degeneracies. Importantly, the intrinsic response exhibits sensitive dependence on the N{e}el vector orientation with a $2pi$ periodicity, which offers a new route for electric detection of the magnetic order in $mathcal{PT}$-invariant antiferromagnets.
168 - X. Li , L. Shen , Y. Bai 2020
A mgnetic bimeron is an in-plane topological counterpart of a magnetic skyrmion. Despite the topological equivalence, their statics and dynamics could be distinct, making them attractive from the perspectives of both physics and spintronic applicatio ns. In this work, we investigate an antiferromagnetic (AFM) thin film with interfacial Dzyaloshinskii-Moriya interaction (DMI), and introduce the AFM bimeron cluster as a new form of topological quasi-particle. Bimerons demonstrate high current-driven mobility as generic AFM solitons, while featuring anisotropic and relativistic dynamics excited by currents with in-plane and out-of-plane polarizations, respectively. Moreover, these spin textures can absorb other bimeron solitons or clusters along the translational direction to acquire a wide range of Neel topological numbers. The clustering involves the rearrangement of topological structures, and gives rise to remarkable changes in static and dynamical properties. The merits of AFM bimeron clusters reveal a potential path to unify multi-bit data creation, transmission, storage and even topology-based computation within the same material system, and may stimulate innovative spintronic devices enabling new paradigms of data manipulations.
We study theoretically and experimentally the spin pumping signals induced by the resonance of canted antiferromagnets with Dzyaloshinskii-Moriya interaction and demonstrate that they can generate easily observable inverse spin-Hall voltages. Using a bilayer of hematite/heavy metal as a model system, we measure at room temperature the antiferromagnetic resonance and an associated inverse spin-Hall voltage, as large as in collinear antiferromagnets. As expected for coherent spin-pumping, we observe that the sign of the inverse spin-Hall voltage provides direct information about the mode handedness as deduced by comparing hematite, chromium oxide and the ferrimagnet Yttrium-Iron Garnet. Our results open new means to generate and detect spin-currents at terahertz frequencies by functionalizing antiferromagnets with low damping and canted moments.
266 - O. Gladii , L. Frangou , A. Hallal 2019
We investigated the self-induced inverse spin Hall effect in ferromagnets. Temperature (T), thickness (t) and angular-dependent measurements of transverse voltage in spin pumping experiments were performed with permalloy films. Results revealed non-m onotonous T-dependence of the self-induced transverse voltage. Qualitative agreement was found with first-principle calculations unravelling the skew scattering, side-jump, and intrinsic contributions to the T-dependent spin Hall conductivity. Experimental data were similar whatever the material in contact with permalloy (oxides or metals), and revealed an increase of produced current with t, demonstrating a bulk origin of the effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا