ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards completing Planetary Systems: The role of minor bodies on life growth and survival

102   0   0.0 ( 0 )
 نشر من قبل Jorge Lillo-Box
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The search for extrasolar planets in the past decades has shown that planets abound in the Solar neighborhood. While we are still missing an Earth twin, the forthcoming space missions and ground-based instrumentation are already driven to achieve this goal. But, in order to fully understand the conditions for life appearing in the Solar System, we still miss some pieces of the planetary system jigsaw puzzle, namely a deeper understanding of the minor bodies. Trojans, moons, and comets are tracers of the formation and evolution processes of planetary systems. These missing pieces are also critical to understand the emergence and evolution of life over millions of years. With the large crop of planetary systems discovered so far and yet to be detected with the forthcoming missions, the hunt for minor bodies in extrasolar systems is a natural continuation of our search for real Solar System- and, in particular, Earth- analogs. This white paper is focused on detection of these minor components and their relevance in the emergence, evolution and survival of life.

قيم البحث

اقرأ أيضاً

Inspired by the close-proximity pair of planets in the Kepler-36 system, we consider two effects that may have important ramifications for the development of life in similar systems where a pair of planets may reside entirely in the habitable zone of the hosting star. Specifically, we run numerical simulations to determine whether strong, resonant (or non-resonant) planet-planet interactions can cause large variations in planet obliquity---thereby inducing large variations in climate. We also determine whether or not resonant interactions affect the rate of lithopanspermia between the planet pair---which could facilitate the growth and maintenance of life on both planets. We find that first-order resonances do not cause larger obliquity variations compared with non-resonant cases. We also find that resonant interactions are not a primary consideration in lithopanspermia. Lithopanspermia is enhanced significantly as the planet orbits come closer together---reaching nearly the same rate as ejected material falling back to the surface of the originating planet (assuming that the ejected material makes it out to the location of our initial conditions). Thus, in both cases our results indicate that close-proximity planet pairs in multihabitable systems are conducive to life in the system.
80 - Caleb Scharf 2015
A simple, heuristic formula with parallels to the Drake Equation is introduced to help focus discussion on open questions for the origins of life in a planetary context. This approach indicates a number of areas where quantitative progress can be mad e on parameter estimation for determining origins of life probabilities. We also suggest that the probability of origin of life events can be dramatically increased on planets with parallel chemistries that can undergo the development of complexity, and in solar systems where more than one planet is available for chemical evolution, and where efficient impact ejecta exchange occurs, increasing the effective chemical search space and available time.
240 - Ji Jianghui 2006
We investigate the secular resonances for massless small bodies and Earth-like planets in several planetary systems. We further compare the results with those of Solar System. For example, in the GJ 876 planetary system, we show that the secular reso nances $ u_1$ and $ u_2$ (respectively, resulting from the inner and outer giant planets) can excite the eccentricities of the Earth-like planets with orbits 0.21 AU $leq a <$ 0.50 AU and eject them out of the system in a short timescale. However, in a dynamical sense, the potential zones for the existence of Earth-like planets are in the area 0.50 AU $leq a leq$ 1.00 AU, and there exist all stable orbits last up to $10^5$ yr with low eccentricities. For other systems, e.g., 47 UMa, we also show that the Habitable Zones for Earth-like planets are related to both secular resonances and mean motion resonances in the systems.
Revealing the mechanisms shaping the architecture of planetary systems is crucial for our understanding of their formation and evolution. In this context, it has been recently proposed that stellar clustering might be the key in shaping the orbital a rchitecture of exoplanets. The main goal of this work is to explore the factors that shape the orbits of planets. We used a homogeneous sample of relatively young FGK dwarf stars with RV detected planets and tested the hypothesis that their association to phase space (position-velocity) over-densities (cluster stars) and under-densities (field stars) impacts the orbital periods of planets. When controlling for the host star properties, on a sample of 52 planets orbiting around cluster stars and 15 planets orbiting around field star, we found no significant difference in the period distribution of planets orbiting these two populations of stars. By considering an extended sample of 73 planets orbiting around cluster stars and 25 planets orbiting field stars, a significant different in the planetary period distributions emerged. However, the hosts associated to stellar under-densities appeared to be significantly older than their cluster counterparts. This did not allow us to conclude whether the planetary architecture is related to age, environment, or both. We further studied a sample of planets orbiting cluster stars to study the mechanism responsible for the shaping of orbits of planets in similar environments. We could not identify a parameter that can unambiguously be responsible for the orbital architecture of massive planets, perhaps, indicating the complexity of the issue. Conclusions. Increased number of planets in clusters and in over-density environments will help to build large and unbiased samples which will then allow to better understand the dominant processes shaping the orbits of planets.
We present an update of the visible and near-infrared colour database of Minor Bodies in the Outer Solar System (MBOSSes), which now includes over 2000 measurement epochs of 555 objects, extracted from over 100 articles. The list is fairly complete a s of December 2011. The database is now large enough to enable any dataset with a large dispersion to be safely identified and rejected from the analysis. The selection method used is quite insensitive to individual outliers. Most of the rejected datasets were observed during the early days of MBOSS photometry. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1, 1). The average colours, absolute magnitude, and spectral gradient are listed for each object, as well as the physico-dynamical classes using a classification adapted from Gladman and collaborators. Colour-colour diagrams, histograms, and various other plots are presented to illustrate and investigate class characteristics and trends with other parameters, whose significances are evaluated using standard statistical tests. The colour tables and all plots are also available on the MBOSS colour web page http://www.eso.org/~ohainaut/MBOSS which will be updated when new measurements are published.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا