ﻻ يوجد ملخص باللغة العربية
Inspired by the close-proximity pair of planets in the Kepler-36 system, we consider two effects that may have important ramifications for the development of life in similar systems where a pair of planets may reside entirely in the habitable zone of the hosting star. Specifically, we run numerical simulations to determine whether strong, resonant (or non-resonant) planet-planet interactions can cause large variations in planet obliquity---thereby inducing large variations in climate. We also determine whether or not resonant interactions affect the rate of lithopanspermia between the planet pair---which could facilitate the growth and maintenance of life on both planets. We find that first-order resonances do not cause larger obliquity variations compared with non-resonant cases. We also find that resonant interactions are not a primary consideration in lithopanspermia. Lithopanspermia is enhanced significantly as the planet orbits come closer together---reaching nearly the same rate as ejected material falling back to the surface of the originating planet (assuming that the ejected material makes it out to the location of our initial conditions). Thus, in both cases our results indicate that close-proximity planet pairs in multihabitable systems are conducive to life in the system.
The aim of this talk is to present the most recent advances in establishing plausible planetary system architectures determined by the gravitational tidal interactions between the planets and the disc in which they are embedded during the early epoch
There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistr
The search for extrasolar planets in the past decades has shown that planets abound in the Solar neighborhood. While we are still missing an Earth twin, the forthcoming space missions and ground-based instrumentation are already driven to achieve thi
In an effort to derive temperature based criteria of habitability for multicellular life, we investigated the thermal limits of terrestrial poikilotherms, i.e. organisms whose body temperature and the functioning of all vital processes is directly af
A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the belts is the presence of one or more planets dynamically carving it. This work aims to investigate this