ﻻ يوجد ملخص باللغة العربية
We present a numerical method for the accurate and efficient simulation of strongly localized light sources, such as quantum dots, embedded in dielectric micro-optical structures. We apply the method in order to optimize the photon extraction efficiency of a single-photon emitter consisting of a quantum dot embedded into a multi-layer stack with further lateral structures. Furthermore, we present methods to study the robustness of the extraction efficiency with respect to fabrication errors and defects.
Future quantum technology relies crucially on building quantum networks with high fidelity. To achieve this challenging goal, it is of utmost importance to connect single quantum systems in a way such that their emitted single-photons overlap with th
User-friendly single-photon sources with high photon-extraction efficiency are crucial building blocks for photonic quantum applications. For many of these applications, such as long-distance quantum key distribution, the use of single-mode optical f
We demonstrate a spectrally broadband and effcient technique for collecting photoluminescence from a single InAs quantum dot directly into a standard single mode optical fiber. In this approach, an optical fiber taper waveguide is placed in contact w
Solid-state single-photon emitters (SPEs) such as the bright, stable, room-temperature defects within hexagonal boron nitride (hBN) are of increasing interest for quantum information science applications. To date, the atomic and electronic origins of
Single-photon sources based on semiconductor quantum dots have emerged as an excellent platform for high efficiency quantum light generation. However, scalability remains a challenge since quantum dots generally present inhomogeneous characteristics.