ﻻ يوجد ملخص باللغة العربية
This paper classifies the set of supersolutions of a general class of periodic-parabolic problems in the presence of a positive supersolution. From this result we characterize the positivity of the underlying resolvent operator through the positivity of the associated principal eigenvalue and the existence of a positive strict supersolution. Lastly, this (scalar) characterization is used to characterize the strong maximum principle for a class of periodic-parabolic systems of cooperative type under arbitrary boundary conditions of mixed type.
We consider general linear non-degenerate weakly-coupled cooperative elliptic systems and study certain monotonicity properties of the generalized principal eigenvalue in $mathbb{R}^d$ with respect to the potential. It is shown that monotonicity on t
In this article we find necessary and sufficient conditions for the strong maximum principle and compact support principle for non-negative solutions to the quasilinear elliptic inequalities $$Delta_infty u + G(|Du|) - f(u),leq 0quad text{in}; mathca
We investigate the parabolic Boundary Harnack Principle for both divergence and non-divergence type operators by the analytical methods we developed in the elliptic context. Besides the classical case, we deal with less regular space-time domains, including slit domains.
In this paper we study the following parabolic system begin{equation*} Delta u -partial_t u =|u|^{q-1}u,chi_{{ |u|>0 }}, qquad u = (u^1, cdots , u^m) , end{equation*} with free boundary $partial {|u | >0}$. For $0leq q<1$, we prove optimal
A shape optimization problem arising from the optimal reinforcement of a membrane by means of one-dimensional stiffeners or from the fastest cooling of a two-dimensional object by means of ``conducting wires is considered. The criterion we consider i