ترغب بنشر مسار تعليمي؟ اضغط هنا

On the monotonicity property of the generalized eigenvalue for weakly-coupled cooperative elliptic systems

99   0   0.0 ( 0 )
 نشر من قبل Ari Arapostathis
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider general linear non-degenerate weakly-coupled cooperative elliptic systems and study certain monotonicity properties of the generalized principal eigenvalue in $mathbb{R}^d$ with respect to the potential. It is shown that monotonicity on the right is equivalent to the recurrence property of the twisted operator which is, in turn, equivalent to the minimal growth property at infinity of the principal eigenfunctions. The strict monotonicity property of the principal eigenvalue is shown to be equivalent with the exponential stability of the twisted operators. An equivalence between the monotonicity property on the right and the stochastic representation of the principal eigenfunction is also established.



قيم البحث

اقرأ أيضاً

122 - Mitia Duerinckx 2021
This work is devoted to the asymptotic behavior of eigenvalues of an elliptic operator with rapidly oscillating random coefficients on a bounded domain with Dirichlet boundary conditions. A sharp convergence rate is obtained for isolated eigenvalues towards eigenvalues of the homogenized problem, as well as a quantitative two-scale expansion result for eigenfunctions. Next, a quantitative central limit theorem is established for eigenvalue fluctuations; more precisely, a pathwise characterization of eigenvalue fluctuations is obtained in terms of the so-called homogenization commutator, in parallel with the recent fluctuation theory for the solution operator.
In this article we study ergodic problems in the whole space $mathbb{R}^N$ for a weakly coupled systems of viscous Hamilton-Jacobi equations with coercive right-hand sides. The Hamiltonians are assumed to have a fairly general structure and the switc hing rates need not be constant. We prove the existence of a critical value $lambda^*$ such that the ergodic eigenvalue problem has a solution for every $lambdaleqlambda^*$ and no solution for $lambda>lambda^*$. Moreover, the existence and uniqueness of non-negative solutions corresponding to the value $lambda^*$ are also established. We also exhibit the implication of these results to the ergodic optimal control problems of controlled switching diffusions.
111 - Francesco Esposito 2019
We investigate qualitative properties of positive singular solutions of some elliptic systems in bounded and unbounded domains. We deduce symmetry and monotonicity properties via the moving plane procedure. Moreover, in the unbounded case, we study s ome cooperative elliptic systems involving critical nonlinearities in $mathbb{R}^n$.
59 - I Anton , J Lopez-Gomez 2018
This paper classifies the set of supersolutions of a general class of periodic-parabolic problems in the presence of a positive supersolution. From this result we characterize the positivity of the underlying resolvent operator through the positivity of the associated principal eigenvalue and the existence of a positive strict supersolution. Lastly, this (scalar) characterization is used to characterize the strong maximum principle for a class of periodic-parabolic systems of cooperative type under arbitrary boundary conditions of mixed type.
We consider systems of weakly coupled Schrodinger equations with nonconstant potentials and we investigate the existence of nontrivial nonnegative solutions which concentrate around local minima of the potentials. We obtain sufficient and necessary c onditions for a sequence of least energy solutions to concentrate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا