ترغب بنشر مسار تعليمي؟ اضغط هنا

Room temperature deposition of superconducting Niobium Nitride films by ion beam assisted sputtering

203   0   0.0 ( 0 )
 نشر من قبل Tomas Polakovic
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use room temperature ion beam assisted sputtering (IBAS) to deposit niobium nitride thin films. Electrical and structural characterizations were performed by electric transport and magnetization measurements at variable temperatures, X-ray diffraction and atomic force microscopy. Compared to reactive sputtering of NbN, films sputtered in presence of an ion beam show remarkable increase in the superconducting critical temperature T$_{rm{c}}$, while exhibiting lower sensitivity to nitrogen concentration during deposition. Thickness dependence of the superconducting critical temperature is comparable to films prepared by conventional methods at high substrate temperatures and is consistent with behavior driven by quantum size effects or weak localization.

قيم البحث

اقرأ أيضاً

The superconducting critical temperature (Tc > 15K) of niobium titanium nitride (NbTiN) thin films allows for low-loss circuits up to 1.1 THz, enabling on-chip spectroscopy and multi-pixel imaging with advanced detectors. The drive for large scale de tector microchips is demanding NbTiN films with uniform properties over an increasingly larger area. This article provides an experimental comparison between two reactive d.c. sputter systems with different target sizes: a small target (100mm diameter) and a large target (127 mm x 444.5 mm). This article focuses on maximizing the Tc of the films and the accompanying I-V characteristics of the sputter plasma, and we find that both systems are capable of depositing films with Tc > 15 K. The resulting film uniformity is presented in a second manuscript in this volume. We find that these films are deposited within the transition from metallic to compound sputtering, at the point where target nitridation most strongly depends on nitrogen flow. Key in the deposition optimization is to increase the systems pumping speed and gas flows to counteract the hysteretic effects induced by the target size. Using the I-V characteristics as a guide proves to be an effective way to optimize a reactive sputter system, for it can show whether the optimal deposition regime is hysteresis-free and accessible.
74 - E. S. Sadki , S. Ooi , K. Hirata 2004
Superconducting nanowires, with a critical temperature of 5.2 K, have been synthesized using an ion-beam-induced deposition, with a Gallium focused ion beam and Tungsten Carboxyl, W(CO)6, as precursor. The films are amorphous, with atomic concentrati ons of about 40, 40, and 20 % for W, C, and Ga, respectively. Zero Kelvin values of the upper critical field and coherence length of 9.5 T and 5.9 nm, respectively, are deduced from the resistivity data at different applied magnetic fields. The critical current density is Jc= 1.5 10^5 A/cm2 at 3 K. This technique can be used as a template-free fabrication method for superconducting devices.
258 - R. Russo , L. Catani , A. Cianchi 2004
The vacuum arc is a well-known technique to produce coating with enhanced adhesion and film density. Many cathodic arc deposition systems are actually in use in industry and research. They all work under (high) vacuum conditions in which water vapor pressure is an important source of film contamination, especially in the pulsed arc mode of operation. Here we present a Cathodic Arc system working under Ultra High Vacuum conditions (UHVCA). UHVCA has been used to produce ultra-pure niobium films with excellent structural and electrical properties at a deposition temperature lower than 100oC. The UHVCA technique therefore opens new perspectives for all applications requiring ultra-pure films or, as in the case of Plasma Immersion Ion Implantation, ultra-pure plasmas.
We fabricated superconducting MgB2 thin films on (001) MgO substrates. The samples were prepared by magnetron rf and dc co-sputtering on heated substrates. They were annealed ex-situ for one hour at temperatures between 450{deg}C and 750{deg}C. We wi ll show that the substrate temperature during the sputtering process and the post annealing temperatures play a crucial role in forming MgB2 superconducting thin films. We achieved a critical onset temperature of 27.1K for a film thickness of 30nm. The crystal structures were measured by x-ray diffraction.
We investigate thin film resistive thermometry based on metal-to-insulator-transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance have been calibrated versus temperature and magnetic field . High sensitivity in tempertaure variation detection is demonstrated through efficient temperature coefficient of resistance. The nitrogen content of the niobium nitride thin films can be tuned to adjust the optimal working temperature range. In the present experiment, we show the versatility of the NbN thin film technology through applications in very different low temperature use-cases. We demonstrate that thin film resistive thermometry can be extended to temperatures below 30 mK with low electrical impedance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا