ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence of ground states for aggregation-diffusion equations

54   0   0.0 ( 0 )
 نشر من قبل Francesco Saverio Patacchini
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze free energy functionals for macroscopic models of multi-agent systems interacting via pairwise attractive forces and localized repulsion. The repulsion at the level of the continuous description is modeled by pressure-related terms in the functional making it energetically favorable to spread, while the attraction is modeled through nonlocal forces. We give conditions on general entropies and interaction potentials for which neither ground states nor local minimizers exist. We show that these results are sharp for homogeneous functionals with entropies leading to degenerate diffusions while they are not sharp for fast diffusions. The particular relevant case of linear diffusion is totally clarified giving a sharp condition on the interaction potential under which the corresponding free energy functional has ground states or not.

قيم البحث

اقرأ أيضاً

100 - Lu Chen , Guozhen Lu , Maochun Zhu 2021
Recently, the authors of the current paper established in [9] the existence of a ground-state solution to the following bi-harmonic equation with the constant potential or Rabinowitz potential: begin{equation} (-Delta)^{2}u+V(x)u=f(u) text{in} mathbb {R}^{4}, end{equation} when the nonlinearity has the special form $f(t)=t(exp(t^2)-1)$ and $V(x)geq c>0$ is a constant or the Rabinowitz potential. One of the crucial elements used in [9] is the Fourier rearrangement argument. However, this argument is not applicable if $f(t)$ is not an odd function. Thus, it still remains open whether the above equation with the general critical exponential nonlinearity $f(u)$ admits a ground-state solution even when $V(x)$ is a positive constant. The first purpose of this paper is to develop a Fourier rearrangement-free approach to solve the above problem. More precisely, we will prove that there is a threshold $gamma^{*}$ such that for any $gammain (0,gamma^*)$, the above equation with the constant potential $V(x)=gamma>0$ admits a ground-state solution, while does not admit any ground-state solution for any $gammain (gamma^{*},+infty)$. The second purpose of this paper is to establish the existence of a ground-state solution to the above equation with any degenerate Rabinowitz potential $V$ vanishing on some bounded open set. Among other techniques, the proof also relies on a critical Adams inequality involving the degenerate potential which is of its own interest.
We give sharp conditions for the large time asymptotic simplification of aggregation-diffusion equations with linear diffusion. As soon as the interaction potential is bounded and its first and second derivatives decay fast enough at infinity, then t he linear diffusion overcomes its effect, either attractive or repulsive, for large times independently of the initial data, and solutions behave like the fundamental solution of the heat equation with some rate. The potential $W(x) sim log |x|$ for $|x| gg 1$ appears as the natural limiting case when the intermediate asymptotics change. In order to obtain such a result, we produce uniform-in-time estimates in a suitable rescaled change of variables for the entropy, the second moment, Sobolev norms and the $C^alpha$ regularity with a novel approach for this family of equations using modulus of continuity techniques.
We investigate a class of aggregation-diffusion equations with strongly singular kernels and weak (fractional) dissipation in the presence of an incompressible flow. Without the flow the equations are supercritical in the sense that the tendency to c oncentrate dominates the strength of diffusion and solutions emanating from sufficiently localised initial data may explode in finite time. The main purpose of this paper is to show that under suitable spectral conditions on the flow, which guarantee good mixing properties, for any regular initial datum the solution to the corresponding advection-aggregation-diffusion equation is global if the prescribed flow is sufficiently fast. This paper can be seen as a partial extension of Kiselev and Xu (Arch. Rat. Mech. Anal. 222(2), 2016), and our arguments show in particular that the suppression mechanism for the classical 2D parabolic-elliptic Keller-Segel model devised by Kiselev and Xu also applies to the fractional Keller-Segel model (where $triangle$ is replaced by $-Lambda^gamma$) requiring only that $gamma>1$. In addition, we remove the restriction to dimension $d<4$.
We study the existence of bound and ground states for a class of nonlinear elliptic systems in $mathbb{R}^N$. These equations involve critical power nonlinearities and Hardy-type singular potentials, coupled by a term containing up to critical powers . More precisely, we find ground states either the positive coupling parameter $ u$ is large or $ u$ is small under suitable assumptions on the other parameters of the problem. Furthermore, bound states are found as Mountain-Pass-type critical points of the underlying functional constrained on the Nehari manifold. Our variational approach improves some known results and allows us to cover range of parameters which have not been considered previously.
In this paper we investigate the long-time behavior of stochastic reaction-diffusion equations of the type $du = (Au + f(u))dt + sigma(u) dW(t)$, where $A$ is an elliptic operator, $f$ and $sigma$ are nonlinear maps and $W$ is an infinite dimensional nuclear Wiener process. The emphasis is on unbounded domains. Under the assumption that the nonlinear function $f$ possesses certain dissipative properties, this equation is known to have a solution with an expectation value which is uniformly bounded in time. Together with some compactness property, the existence of such a solution implies the existence of an invariant measure which is an important step in establishing the ergodic behavior of the underlying physical system. In this paper we expand the existing classes of nonlinear functions $f$ and $sigma$ and elliptic operators $A$ for which the invariant measure exists, in particular, in unbounded domains. We also show the uniqueness of the invariant measure for an equation defined on the upper half space if $A$ is the Shr{o}dinger-type operator $A = frac{1}{rho}(text{div} rho abla u)$ where $rho = e^{-|x|^2}$ is the Gaussian weight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا