ﻻ يوجد ملخص باللغة العربية
In this paper we investigate the long-time behavior of stochastic reaction-diffusion equations of the type $du = (Au + f(u))dt + sigma(u) dW(t)$, where $A$ is an elliptic operator, $f$ and $sigma$ are nonlinear maps and $W$ is an infinite dimensional nuclear Wiener process. The emphasis is on unbounded domains. Under the assumption that the nonlinear function $f$ possesses certain dissipative properties, this equation is known to have a solution with an expectation value which is uniformly bounded in time. Together with some compactness property, the existence of such a solution implies the existence of an invariant measure which is an important step in establishing the ergodic behavior of the underlying physical system. In this paper we expand the existing classes of nonlinear functions $f$ and $sigma$ and elliptic operators $A$ for which the invariant measure exists, in particular, in unbounded domains. We also show the uniqueness of the invariant measure for an equation defined on the upper half space if $A$ is the Shr{o}dinger-type operator $A = frac{1}{rho}(text{div} rho abla u)$ where $rho = e^{-|x|^2}$ is the Gaussian weight.
In this paper, we address the long time behaviour of solutions of the stochastic Schrodinger equation in $mathbb{R}^d$. We prove the existence of an invariant measure and establish asymptotic compactness of solutions, implying in particular the existence of an ergodic measure.
We address the long time behavior of solutions of the stochastic Korteweg-de Vries equation $ du + (partial^3_x u +upartial_x u +lambda u)dt = f dt+Phi dW_t$ on ${mathbb R}$ where $f$ is a deterministic force. We prove that the Feller property holds
This thesis is concerned with the asymptotic behavior of solutions of stochastic $p$-Laplace equations driven by non-autonomous forcing on $mathbb{R}^n$. Two cases are studied, with additive and multiplicative noise respectively. Estimates on the tai
This paper is concerned with the asymptotic behavior of solutions of the two-dimensional Navier-Stokes equations with both non-autonomous deterministic and stochastic terms defined on unbounded domains. We first introduce a continuous cocycle for the
This paper is concerned with pullback attractors of the stochastic p-Laplace equation defined on the entire space R^n. We first establish the asymptotic compactness of the equation in L^2(R^n) and then prove the existence and uniqueness of non-autono