ترغب بنشر مسار تعليمي؟ اضغط هنا

Velocity-Space Cascade in Magnetized Plasmas: Numerical Simulations

156   0   0.0 ( 0 )
 نشر من قبل Oreste Pezzi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plasma turbulence is studied via direct numerical simulations in a two-dimensional spatial geometry. Using a hybrid Vlasov-Maxwell model, we investigate the possibility of a velocity-space cascade. A novel theory of space plasma turbulence has been recently proposed by Servidio {it et al.} [PRL, {bf 119}, 205101 (2017)], supported by a three-dimensional Hermite decomposition applied to spacecraft measurements, showing that velocity space fluctuations of the ion velocity distribution follow a broad-band, power-law Hermite spectrum $P(m)$, where $m$ is the Hermite index. We numerically explore these mechanisms in a more magnetized regime. We find that (1) the plasma reveals spectral anisotropy in velocity space, due to the presence of an external magnetic field (analogous to spatial anisotropy of fluid and plasma turbulence); (2) the distribution of energy follows the prediction $P(m)sim m^{-2}$, proposed in the above theoretical-observational work; and (3) the velocity-space activity is intermittent in space, being enhanced close to coherent structures such as the reconnecting current sheets produced by turbulence. These results may be relevant to the nonlinear dynamics weakly-collisional plasma in a wide variety of circumstances.

قيم البحث

اقرأ أيضاً

Magnetic confinement fusion reactors suffer severely from heat and particle losses through turbulent transport, which has inspired the construction of ever larger and more expensive reactors. Numerical simulations are vital to their design and operat ion, but particle collisions are too infrequent for fluid descriptions to be valid. Instead, strongly magnetised fusion plasmas are described by the gyrokinetic equations, a nonlinear integro-differential system for evolving the particle distribution functions in a five-dimensional position and velocity space, and the consequent electromagnetic field. Due to the high dimensionality, simulations of small reactor sections require hundreds of thousands of CPU hours on High Performance Computing platforms. We develop a Hankel-Hermite spectral representation for velocity space that exploits structural features of the gyrokinetic system. The representation exactly conserves discrete free energy in the absence of explicit dissipation, while our Hermite hypercollision operator captures Landau damping with few variables. Calculation of the electromagnetic fields becomes purely local, eliminating inter-processor communication in, and vastly accelerating, searches for linear instabilities. We implement these ideas in SpectroGK, an efficient parallel code. Turbulent fusion plasmas may dissipate free energy through linear phase mixing to fine scales in velocity space, as in Landau damping, or through a nonlinear cascade to fine scales in physical space, as in hydrodynamic turbulence. Using SpectroGK to study saturated electrostatic drift-kinetic turbulence, we find that the nonlinear cascade suppresses linear phase mixing at energetically-dominant scales, so the turbulence is fluid-like. We use this observation to derive Fourier-Hermite spectra for the electrostatic potential and distribution function, and confirm these spectra with simulations.
Molecular dynamics simulations are used to show that strong magnetization significantly increases the space and time scales associated with interparticle correlations. The physical mechanism responsible is a channeling effect whereby particles are co nfined to move along narrow cylinders with a width characterized by the gyroradius and a length characterized by the collision mean free path. The predominant interaction is $180^circ$ collisions at the ends of the collision cylinders, resulting in a long-range correlation parallel to the magnetic field. Its influence is demonstrated via the dependence of the velocity autocorrelation functions and self-diffusion coefficients on the domain size and run time in simulations of the one-component plasma. A very large number of particles, and therefore domain size, must be used to resolve the long-range correlations, suggesting that the number of charged particles in the collection must increase in order to constitute a plasma. Correspondingly, this effect significantly delays the time it takes to reach a diffusive regime, in which the mean square displacement of particles increases linearly in time. This result presents challenges for connecting measurements in non-neutral and ultracold neutral plasma experiments, as well as molecular dynamics simulations, with fluid transport properties due to their finite size.
We present the first laboratory observations of time-resolved electron and ion velocity distributions in forming, magnetized collisionless shocks. Thomson scattering of a probe laser beam was used to observe the interaction of a laser-driven, superso nic piston plasma expanding through a magnetized ambient plasma. From the Thomson-scattered spectra we measure time-resolved profiles of electron density, temperature, and ion flow speed, as well as spatially-resolved magnetic fields from proton radiography. We observe direct evidence of the sweeping up and acceleration of ambient ions, magnetic field compression, and the subsequent deformation of the piston ion flow, key steps in shock formation. Even before the shock has fully formed, we observe strong density compressions and electron heating associated with the pile up of piston ions. The results demonstrate that laboratory experiments can probe particle velocity distributions relevant to collisionless shocks, and thus complement similar measurements undertaken by spacecraft missions.
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an ana lytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic Four-Ray Star pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].
The wakefield and stopping power of an ion-beam pulse moving in magnetized plasmas are investigated by particle-in-cell (PIC) simulations. The effects of beam velocity and density on the wake and stopping power are discussed. In the presence of magne tic field, it is found that beside the longitudinal conversed V-shaped wakes, the strong whistler wave are observed when low-density and low-velocity pulses moving in plasmas. The corresponding stopping powers are enhanced due to the drag of these whistler waves. As beam velocities increase, the whistler waves disappear, and only are conversed V-shape wakes observed. The corresponding stopping powers are reduced compared with these in isotropic plasmas. When high-density pulses transport in the magnetized plasmas, the whistler waves are greatly inhibited for low-velocity pulses and disappear for high-velocity pulses. Additionally, the magnetic field reduces the stopping powers for all high-density cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا