ﻻ يوجد ملخص باللغة العربية
We make precise some results on the cloaking of displacement fields in linear elasticity. In the spirit of transformation media theory, the transformed governing equations in Cosserat and Willis frameworks are shown to be equivalent to certain high contrast small defect problems for the usual Navier equations. We discuss near-cloaking for elasticity systems via a regularized transform and perform numerical experiments to illustrate our near-cloaking results. We also study the sharpness of the estimates from [H. Ammari, H. Kang, K. Kim and H. Lee, J. Diff. Eq. 254, 4446-4464 (2013)], wherein the convergence of the solutions to the transmission problems is investigated, when the Lame parameters in the inclusion tend to extreme values. Both soft and hard inclusion limits are studied and we also touch upon the finite frequency case. Finally, we propose an approximate isotropic cloak algorithm for a symmetrized Cosserat cloak.
This paper is devoted to studying impedance eigenvalues (that is, eigenvalues of a particular Dirichlet-to-Neumann map) for the time harmonic linear elastic wave problem, and their potential use as target-signatures for fluid-solid interaction proble
We study the isotropic elastic wave equation in a bounded domain with boundary with coefficients having jumps at a nested set of interfaces satisfying the natural transmission conditions there. We analyze in detail the microlocal behavior of such sol
A central ingredient of cloaking-by-mapping is the diffeomorphisn which transforms an annulus with a small hole into an annulus with a finite size hole, while being the identity on the outer boundary of the annulus. The resulting meta-material is ani
We study the approximate cloaking via transformation optics for electromagnetic waves in the time harmonic regime in which the cloaking device {it only} consists of a layer constructed by the mapping technique. Due to the fact that no-lossy layer is
We consider a singularly-perturbed two-well problem in the context of planar geometrically linear elasticity to model a rectangular martensitic nucleus in an austenitic matrix. We derive the scaling regimes for the minimal energy in terms of the prob