ﻻ يوجد ملخص باللغة العربية
We study the approximate cloaking via transformation optics for electromagnetic waves in the time harmonic regime in which the cloaking device {it only} consists of a layer constructed by the mapping technique. Due to the fact that no-lossy layer is required, resonance might appear and the analysis is delicate. We analyse both non-resonant and resonant cases. In particular, we show that the energy can blow up inside the cloaked region in the resonant case and/whereas cloaking is {it achieved} in {it both} cases. Moreover, the degree of visibility {it depends} on the compatibility of the source inside the cloaked region and the system. These facts are new and distinct from known mathematical results in the literature.
This is a survey of approximate cloaking using transformation optics for acoustic and electromagnetic waves.
In this paper, we establish approximate cloaking for the heat equation via transformation optics. We show that the degree of visibility is of the order $epsilon$ in three dimensions and $|lnepsilon|^{-1}$ in two dimensions, where $epsilon$ is the regularization parameter.
We study approximate cloaking using transformation optics for electromagnetic waves in the time domain. Our approach is based on estimates of the degree of visibility in the frequency domain for all frequencies in which the frequency dependence is ex
Recently, researchers have proposed several carpet cloaking designs that are able to hide a real object under a bump in a way that it is perceived as a flat ground plane. Here, we present a method to design two-dimensional isotropic carpet cloaking d
We make precise some results on the cloaking of displacement fields in linear elasticity. In the spirit of transformation media theory, the transformed governing equations in Cosserat and Willis frameworks are shown to be equivalent to certain high c