ﻻ يوجد ملخص باللغة العربية
The Reduced Basis Method (RBM) is a model reduction technique used to solve parametric PDEs that relies upon a basis set of solutions to the PDE at specific parameter values. To generate this reduced basis, the set of a small number of parameter values must be strategically chosen. We apply a Metropolis algorithm and a gradient algorithm to find the set of parameters and compare them to the standard greedy algorithm most commonly used in the RBM. We test our methods by using the RBM to solve a simplified version of the governing partial differential equation for hyperspectral diffuse optical tomography (hyDOT). The governing equation for hyDOT is an elliptic PDE parameterized by the wavelength of the laser source. For this one-dimensional problem, we find that both the Metropolis and gradient algorithms are potentially superior alternatives to the greedy algorithm in that they generate a reduced basis which produces solutions with a smaller relative error with respect to solutions found using the finite element method and in less time.
Optical coherence tomography (OCT) is a widely used imaging technique in the micrometer regime, which gained accelerating interest in medical imaging %and material testing in the last twenty years. In up-to-date OCT literature [5,6] certain simplifyi
Linear kinetic transport equations play a critical role in optical tomography, radiative transfer and neutron transport. The fundamental difficulty hampering their efficient and accurate numerical resolution lies in the high dimensionality of the phy
In numerical simulations of many charged systems at the micro/nano scale, a common theme is the repeated solution of the Poisson-Boltzmann equation. This task proves challenging, if not entirely infeasible, largely due to the nonlinearity of the equa
We present a reduced basis technique for long-time integration of parametrized incompressible turbulent flows. The new contributions are threefold. First, we propose a constrained Galerkin formulation that corrects the standard Galerkin statement by
Based on the ACV approach to transplanckian energies, the reduced-action model for the gravitational S-matrix predicts a critical impact parameter b_c ~ R = 2 G sqrt{s} such that S-matrix unitarity is satisfied in the perturbative region b > b_c, whi