ﻻ يوجد ملخص باللغة العربية
We present a reduced basis technique for long-time integration of parametrized incompressible turbulent flows. The new contributions are threefold. First, we propose a constrained Galerkin formulation that corrects the standard Galerkin statement by incorporating prior information about the long-time attractor. For explicit and semi-implicit time discretizations, our statement reads as a constrained quadratic programming problem where the objective function is the Euclidean norm of the error in the reduced Galerkin (algebraic) formulation, while the constraints correspond to bounds for the maximum and minimum value of the coefficients of the $N$-term expansion. Second, we propose an emph{a posteriori} error indicator, which corresponds to the dual norm of the residual associated with the time-averaged momentum equation. We demonstrate that the error indicator is highly-correlated with the error in mean flow prediction, and can be efficiently computed through an offline/online strategy. Third, we propose a Greedy algorithm for the construction of an approximation space/procedure valid over a range of parameters; the Greedy is informed by the emph{a posteriori} error indicator developed in this paper. We illustrate our approach and we demonstrate its effectiveness by studying the dependence of a two-dimensional turbulent lid-driven cavity flow on the Reynolds number.
Linear kinetic transport equations play a critical role in optical tomography, radiative transfer and neutron transport. The fundamental difficulty hampering their efficient and accurate numerical resolution lies in the high dimensionality of the phy
In numerical simulations of many charged systems at the micro/nano scale, a common theme is the repeated solution of the Poisson-Boltzmann equation. This task proves challenging, if not entirely infeasible, largely due to the nonlinearity of the equa
This paper addresses how two time integration schemes, the Heuns scheme for explicit time integration and the second-order Crank-Nicolson scheme for implicit time integration, can be coupled spatially. This coupling is the prerequisite to perform a c
We propose and test the first Reduced Radial Basis Function Method (R$^2$BFM) for solving parametric partial differential equations on irregular domains. The two major ingredients are a stable Radial Basis Function (RBF) solver that has an optimized
Reduced bases have been introduced for the approximation of parametrized PDEs in applications where many online queries are required. Their numerical efficiency for such problems has been theoretically confirmed in cite{BCDDPW,DPW}, where it is shown