ترغب بنشر مسار تعليمي؟ اضغط هنا

Inclusive electron-nucleus cross section within the Self Consistent Greens Function approach

196   0   0.0 ( 0 )
 نشر من قبل Noemi Rocco
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute inclusive electron-nucleus cross sections using ab initio spectral functions of $^4$He and $^{16}$O obtained within the Self Consistent Greens Function approach. The formalism adopted is based on the factorization of the spectral function and the nuclear transition matrix elements. This allows to provide an accurate description of nuclear dynamics and to account for relativistic effects in the interaction vertex. Our calculations use a saturating chiral Hamiltonian in order reproduce the correct nuclear sizes. When final state interactions for the struck particle are accounted for, we find nice agreement between the data and the theory for the inclusive electron-$^{16}$O cross section. The results lay the foundations for future applications of the Self Consistent Greens Function method, in both closed and open shell nuclei, to neutrino data analysis. This work also presents results for the point-proton, charge and single-nucleon momentum distribution of the same two nuclei. The center of mass can affect these quantities for light nuclei and cannot be separated cleanly in most ab initio post-Hartree-Fock methods. In order to address this, we developed a Metropolis Monte Carlo calculation in which the center of mass coordinate can be subtracted exactly from the trial wave function and the expectation values. We gauged this effect for $^4$He by removing the center of mass effect from the Optimal Reference State wave function that is generated during the Self Consistent Greens Function calculations. Our findings clearly indicate that the residual center of mass contribution strongly modifies calculated matter distributions with respect to those obtained in the intrinsic frame. Hence, its subtraction is crucial for a correct description of light nuclei.

قيم البحث

اقرأ أيضاً

A Greens function approach to the inclusive quasielastic ($e,e$) scattering is presented. The components of the nuclear response are written in terms of the single-particle optical model Greens function. The explicit calculation of the Greens functio n can be avoided by its spectral representation, which is based on a biorthogonal expansion in terms of the eigenfunctions of the non-Hermitian optical potential and of its Hermitian conjugate. This allows one to treat final state interactions consistently in the inclusive ($e,e$) and in the exclusive ($e,eN$) reactions. Numerical results for the longitudinal and transverse response functions obtained in a nonrelativistic and in a relativistic framework are presented and discussed also in comparison with data.
We compare the results of the relativistic Greens function model with the experimental data of the charged-current inclusive differential neutrino-nucleus cross sections published by the T2K Collaboration. The model, which is able to describe both MI NER$ u$A and MiniBooNE charged-current quasielastic scattering data, underpredicts the inclusive T2K cross sections.
Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpretating neutrino- and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response func tion defines a universal scaling function, which is independent of the nature of the probe. In this work, we analyze the nucleon-density response function of $^{12}$C, neglecting collective excitations. We employ particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions. This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations, encoded in the continuum component of the hole SF.
We present the fundamental techniques and working equations of many-body Greens function theory for calculating ground state properties and the spectral strength. Greens function methods closely relate to other polynomial scaling approaches discussed in chapters 8 and 10. However, here we aim directly at a global view of the many-fermion structure. We derive the working equations for calculating many-body propagators, using both the Algebraic Diagrammatic Construction technique and the self-consistent formalism at finite temperature. Their implementation is discussed, as well as the inclusion of three-nucleon interactions. The self-consistency feature is essential to guarantee thermodynamic consistency. The pairing and neutron matter models introduced in previous chapters are solved and compared with the other methods in this book.
We have studied the scaling properties of the electromagnetic response functions of $^4$He and $^{12}$C nuclei computed by the Greens Function Monte Carlo approach, retaining only the one-body current contribution. Longitudinal and transverse scaling functions have been obtained in the relativistic and non relativistic cases and compared to experiment for various kinematics. The characteristic asymmetric shape of the scaling function exhibited by data emerges in the calculations in spite of the non relativistic nature of the model. The results are consistent with scaling of zeroth, first and second kinds. Our analysis reveals a direct correspondence between the scaling and the nucleon-density response functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا