ﻻ يوجد ملخص باللغة العربية
We present the fundamental techniques and working equations of many-body Greens function theory for calculating ground state properties and the spectral strength. Greens function methods closely relate to other polynomial scaling approaches discussed in chapters 8 and 10. However, here we aim directly at a global view of the many-fermion structure. We derive the working equations for calculating many-body propagators, using both the Algebraic Diagrammatic Construction technique and the self-consistent formalism at finite temperature. Their implementation is discussed, as well as the inclusion of three-nucleon interactions. The self-consistency feature is essential to guarantee thermodynamic consistency. The pairing and neutron matter models introduced in previous chapters are solved and compared with the other methods in this book.
Microscopic calculations of the electromagnetic response of medium-mass nuclei are now feasible thanks to the availability of realistic nuclear interactions with accurate saturation and spectroscopic properties, and the development of large-scale com
We compute inclusive electron-nucleus cross sections using ab initio spectral functions of $^4$He and $^{16}$O obtained within the Self Consistent Greens Function approach. The formalism adopted is based on the factorization of the spectral function
The present thesis aims at studying the properties of symmetric nuclear and pure neutron matter from a Greens functions point of view, including two-body and three-body chiral forces. An extended self-consistent Greens function formalism is defined t
We extend the self-consistent Greens functions formalism to take into account three-body interactions. We analyze the perturbative expansion in terms of Feynman diagrams and define effective one- and two-body interactions, which allows for a substant
A systematic study of the microscopic and thermodynamical properties of pure neutron matter at finite temperature within the Self-Consistent Greens Function approach is performed. The model dependence of these results is analyzed by both comparing th