ﻻ يوجد ملخص باللغة العربية
In statistical mechanics, a small system exchanges conserved quantities---heat, particles, electric charge, etc.---with a bath. The small system thermalizes to the canonical ensemble, or the grand canonical ensemble, etc., depending on the conserved quantities. The conserved quantities are represented by operators usually assumed to commute with each other. This assumption was removed within quantum-information-theoretic (QI-theoretic) thermodynamics recently. The small systems long-time state was dubbed ``the non-Abelian thermal state (NATS). We propose an experimental protocol for observing a system thermalize to the NATS. We illustrate with a chain of spins, a subset of which form the system of interest. The conserved quantities manifest as spin components. Heisenberg interactions push the conserved quantities between the system and the effective bath, the rest of the chain. We predict long-time expectation values, extending the NATS theory from abstract idealization to finite systems that thermalize with finite couplings for finite times. Numerical simulations support the analytics: The system thermalizes to the NATS, rather than to the canonical prediction. Our proposal can be implemented with ultracold atoms, nitrogen-vacancy centers, trapped ions, quantum dots, and perhaps nuclear magnetic resonance. This work introduces noncommuting conserved quantities from QI-theoretic thermodynamics into quantum many-body physics: atomic, molecular, and optical physics and condensed matter.
Relaxation of few-body quantum systems can strongly depend on the initial state when the systems semiclassical phase space is mixed, i.e., regions of chaotic motion coexist with regular islands. In recent years, there has been much effort to understa
Certain wave functions of non-interacting quantum chaotic systems can exhibit scars in the fabric of their real-space density profile. Quantum scarred wave functions concentrate in the vicinity of unstable periodic classical trajectories. We introduc
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance
The assumption that quantum systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization
Recent discovery of persistent revivals in quantum simulators based on Rydberg atoms have pointed to the existence of a new type of dynamical behavior that challenged the conventional paradigms of integrability and thermalization. This novel collecti