ﻻ يوجد ملخص باللغة العربية
LaCrO$_3$ (LCO) / SrTiO$_3$ (STO) heterojunctions are intriguing due to a polar discontinuity along (001), two distinct and controllable interface structures [(LaO)$^+$/(TiO$_2$)$^0$ and (SrO)$^0$/(CrO$_2$)$^-$], and interface-induced polarization. In this study, we have used soft- and hard x-ray standing-wave excited photoemission spectroscopy (SW-XPS) to generate a quantitative determination of the elemental depth profiles and interface properties, band alignments, and the depth distribution of the interface-induced built-in potentials in the two constituent oxides. We observe an alternating charged interface configuration: a positively charged (LaO)$^+$/(TiO$_2$)$^0$ intermediate layer at the LCO$_textbf{top}$/STO$_textbf{bottom}$ interface and a negatively charged (SrO)$^0$/(CrO$_2$)$^-$ intermediate layer at the STO$_textbf{top}$/LCO$_textbf{bottom}$ interface. Using core-level SW data, we have determined the depth distribution of species, including through the interfaces, and these results are in excellent agreement with scanning transmission electron microscopy and electron energy loss spectroscopy (STEM-EELS) mapping of local structure and composition. SW-XPS also enabled deconvolution of the LCO-contributed and STO- contributed matrix-element-weighted density of states (MEWDOSs) from the valence band (VB) spectra for the LCO/STO superlattice (SL). Monitoring the VB edges of the deconvoluted MEWDOS shifts with a change in probing profile, the alternating charge- induced built-in potentials are observed in both constituent oxides. Finally, using a two-step simulation approach involving first core-level binding energy shifts and then valence-band modeling, the built-in potential gradients across the SL are resolved in detail and represented by the depth distribution of VB edges.
Epitaxial interfaces and superlattices comprised of polar and non-polar perovskite oxides have generated considerable interest because they possess a range of desirable properties for functional devices. In this work, emergent polarization in superla
The effect of growth conditions on the structural and electronic properties of the polar/non-polar LaCrO$_3$/SrTiO$_3$ (LCO/STO) interface has been investigated. The interface is either insulating or metallic depending on growth conditions. A high sh
Hybrid multiferroics such as BiFeO$_3$ (BFO) and La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) heterostructures are highly interesting functional systems due to their complex electronic and magnetic properties. One of the key parameters influencing the emergent
Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic p
The heterostructure consisting of the Mott insulator LaVO$_3$ and the band insulator SrTiO$_3$ is considered a promising candidate for future photovoltaic applications. Not only does the (direct) excitation gap of LaVO$_3$ match well the solar spectr