ﻻ يوجد ملخص باللغة العربية
We report a $^{75}$As nuclear magnetic resonance study in LaFeAsO single crystals, which undergoes nematic and antiferromagnetic transitions at $T_text{nem}sim 156$ K and $T_N sim 138$ K, respectively. Below $T_text{nem}$, the $^{75}$As spectrum splits sharply into two for an external magnetic field parallel to the orthorhombic $a$ or $b$ axis in the FeAs planes. Our analysis of the data demonstrates that the NMR line splitting arises from an electronically driven rotational symmetry breaking. The $^{75}$As spin-lattice relaxation rate as a function of temperature shows that spin fluctuations are strongly enhanced just below $T_text{nem}$. These NMR findings indicate that nematic order promotes spin fluctuations in magnetically ordered LaFeAsO, as observed in non-magnetic and superconducting FeSe. We conclude that the origin of nematicity is identical in both FeSe and LaFeAsO regardless of whether or not a long range magnetic order develops in the nematic state.
We give evidence for intrinsic, defect-induced bulk paramagnetism in SiC by means of $^{13}$C and $^{29}$Si nuclear magnetic resonance (NMR) spectroscopy. The temperature dependence of the internal dipole-field distribution, probed by the spin part o
We report $^{75}$As-NMR results for CrAs under pressure, which shows superconductivity adjoining a helimagnetically ordered state. We successfully evaluated the Knight shift from the spectrum, which is strongly affected by the quadrupole interaction.
We have studied the magnetism in superconducting single crystals of EuFe2 As1.4 P0.6 by using the local probe techniques of zero-field muon spin rotation/relaxation and 151 Eu/57 Fe Mossbauer spec- troscopy. All of these measurements reveal magnetic
The low-temperature thermal conductivity (kappa) of GdFeO_3 single crystals is found to be strongly dependent on magnetic field. The low-field kappa (H) curves show two dips for H parallel a and only one dip for H parallel c, with the characteristic
We have performed $^{63}$Cu nuclear magnetic resonance/nuclear quadrupole resonance measurements to investigate the magnetic and superconducting (SC) properties on a superconductivity dominant ($S$-type) single crystal of CeCu$_2$Si$_2$. Although the