ﻻ يوجد ملخص باللغة العربية
A dielectric-loaded linac powered by THz-pulses is one of the key parts of the Attosecond X-ray Science: Imaging and Spectroscopy (AXSIS) project at DESY, Hamburg. As in conventional accelerators, the AXSIS linac is designed to have phase velocity equal to the speed of light which, in this case, is realized by tuning the thickness of the dielectric layer and the radius of the vacuum channel. Therefore, structure fabrication errors will lead to a change in the beam dynamics and beam quality. Additionally, errors in the bunch injection will also affect the acceleration process and can cause beam loss on the linac wall. This paper numerically investigates the process of electron beam acceleration in the AXSIS linac, taking into account the aforementioned errors. Particle tracking simulations were done using the code ECHO, which uses a low-dispersive algorithm for the field calculation and was specially adapted for the dielectric-loaded accelerating structures.
The AXSIS project (Attosecond X-ray Science: Imaging and Spectroscopy) aims to develop a THz-driven compact X-ray source for applications e.g. in chemistry and biology by using ultrafast coherent diffraction imaging and spectroscopy. The key componen
In the framework of the Eupraxia Design Study an advanced accelerator facility EUPRAXIA@SPARC_LAB has been proposed to be realized at Frascati (Italy) Laboratories of INFN. Two advanced acceleration schemes will be applied, namely an ultimate high gr
A special beam line for high energy electron radiography is designed, including achromat and imaging systems. The requirement of the angle and position correction on the target from imaging system can be approximately realized by fine tuning the quad
We propose and demonstrate a novel method to produce few-femtosecond electron beam with relatively low timing jitter. In this method a relativistic electron beam is compressed from about 150 fs (rms) to about 7 fs (rms, upper limit) with the wakefiel
We propose and demonstrate a novel method to reduce the pulse width and timing jitter of a relativistic electron beam through THz-driven beam compression. In this method the longitudinal phase space of a relativistic electron beam is manipulated by a