ﻻ يوجد ملخص باللغة العربية
We study detectability properties for labeled Petri nets and finite automata. We first study weak approximate detectability (WAD) that implies that there exists an infinite observed output sequence of the system such that each prefix of the output sequence with length greater than a given value allows an observer to determine if the current state belongs to a given set. We also consider two new concepts called instant strong detectability (ISD) and eventual strong detectability (ESD). The former property implies that for each possible infinite observed output sequence each prefix of the output sequence allows reconstructing the current state. The latter implies that for each possible infinite observed output sequence, there exists a value such that each prefix of the output sequence with length greater than that value allows reconstructing the current state. Results: WAD: undecidable for labeled Petri nets, PSPACE-complete for finite automata ISD: decidable and EXPSPACE-hard for labeled Petri nets, belongs to P for finite automata ESD: decidable under promptness assumption and EXPSPACE-hard for labeled Petri nets, belongs to P for finite automata SD: belongs to P for finite automata, strengthens Shu and Lins 2011 results based on two assumptions of deadlock-freeness and promptness ISD<SD<ESD<WD<WAD for both labeled Petri nets and finite automata
The categorical modeling of Petri nets has received much attention recently. The Dialectica construction has also had its fair share of attention. We revisit the use of the Dialectica construction as a categorical model for Petri nets generalizing th
In this paper, by developing appropriate methods, we for the first time obtain characterization of four fundamental notions of detectability for general labeled weighted automata over monoids (denoted by $mathcal{A}^{mathfrak{M}}$ for short), where t
Petri nets, also known as vector addition systems, are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. T
We consider approaches for causal semantics of Petri nets, explicitly representing dependencies between transition occurrences. For one-safe nets or condition/event-systems, the notion of process as defined by Carl Adam Petri provides a notion of a r
This paper proposes a semi-structural approach to verify the nonblockingness of a Petri net. We construct a structure, called minimax basis reachability graph (minimax-BRG): it provides an abstract description of the reachability set of a net while p