ترغب بنشر مسار تعليمي؟ اضغط هنا

The Reachability Problem for Petri Nets is Not Elementary

249   0   0.0 ( 0 )
 نشر من قبل Jerome Leroux
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Petri nets, also known as vector addition systems, are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. The central algorithmic problem for Petri nets is reachability: whether from the given initial configuration there exists a sequence of valid execution steps that reaches the given final configuration. The complexity of the problem has remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory of verification. Decidability was proved by Mayr in his seminal STOC 1981 work, and the currently best published upper bound is non-primitive recursive Ackermannian of Leroux and Schmitz from LICS 2019. We establish a non-elementary lower bound, i.e. that the reachability problem needs a tower of exponentials of time and space. Until this work, the best lower bound has been exponential space, due to Lipton in 1976. The new lower bound is a major breakthrough for several reasons. Firstly, it shows that the reachability problem is much harder than the coverability (i.e., state reachability) problem, which is also ubiquitous but has been known to be complete for exponential space since the late 1970s. Secondly, it implies that a plethora of problems from formal languages, logic, concurrent systems, process calculi and other areas, that are known to admit reductions from the Petri nets reachability problem, are also not elementary. Thirdly, it makes obsolete the currently best lower bounds for the reachability problems for two key extensions of Petri nets: with branching and with a pushdown stack.



قيم البحث

اقرأ أيضاً

299 - Ranko Lazic 2013
By adapting the iterative yardstick construction of Stockmeyer, we show that the reachability problem for vector addition systems with a stack does not have elementary complexity. As a corollary, the same lower bound holds for the satisfiability prob lem for a two-variable first-order logic on trees in which unbounded data may label only leaf nodes. Whether the two problems are decidable remains an open question.
168 - Chao Gu , Ziyue Ma , Zhiwu Li 2020
This paper proposes a semi-structural approach to verify the nonblockingness of a Petri net. We construct a structure, called minimax basis reachability graph (minimax-BRG): it provides an abstract description of the reachability set of a net while p reserving all information needed to test if the net is blocking. We prove that a bounded deadlock-free Petri net is nonblocking if and only if its minimax-BRG is unobstructed, which can be verified by solving a set of integer constraints and then examining the minimax-BRG. For Petri nets that are not deadlock-free, one needs to determine the set of deadlock markings. This can be done with an approach based on the computation of maximal implicit firing sequences enabled by the markings in the minimax-BRG. The approach we developed does not require the construction of the reachability graph and has wide applicability.
The categorical modeling of Petri nets has received much attention recently. The Dialectica construction has also had its fair share of attention. We revisit the use of the Dialectica construction as a categorical model for Petri nets generalizing th e original application to suggest that Petri nets with different kinds of transitions can be modeled in the same categorical framework. Transitions representing truth-values, probabilities, rates or multiplicities, evaluated in different algebraic structures called lineales are useful and are modeled here in the same category. We investigate (categorical instances of) this generalized model and its connections to more recent models of categorical nets.
We investigate the problem of parameter synthesis for time Petri nets with a cost variable that evolves both continuously with time, and discretely when firing transitions. More precisely, parameters are rational symbolic constants used for time cons traints on the firing of transitions and we want to synthesise all their values such that some marking is reachable, with a cost that is either minimal or simply less than a given bound. We first prove that the mere existence of values for the parameters such that the latter property holds is undecidable. We nonetheless provide symbolic semi-algorithms for the two synthesis problems and we prove them both sound and complete when they terminate. We also show how to modify them for the case when parameter values are integers. Finally, we prove that these modifi
This paper introduces two mechanisms for computing over-approximations of sets of reachable states, with the aim of ensuring termination of state-space exploration. The first mechanism consists in over-approximating the automata representing reachabl e sets by merging some of their states with respect to simple syntactic criteria, or a combination of such criteria. The second approximation mechanism consists in manipulating an auxiliary automaton when applying a transducer representing the transition relation to an automaton encoding the initial states. In addition, for the second mechanism we propose a new approach to refine the approximations depending on a property of interest. The proposals are evaluated on examples of mutual exclusion protocols.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا