ﻻ يوجد ملخص باللغة العربية
We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe$_2$ barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.
We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron-nitride (hBN) dielectr
Spin-orbit coupling in graphene can be increased far beyond its intrinsic value by proximity coupling to a transition metal dichalcogenide. In bilayer graphene, this effect was predicted to depend on the occupancy of both graphene layers, rendering i
We report on magneto-transport measurements up to 30 T performed on a bilayer graphene Hall bar, enclosed by two thin hexagonal boron nitride flakes. Our high mobility sample exhibits an insulating state at neutrality point which evolves into a metal
Twisted bilayer graphene provides a new two-dimensional platform for studying electron interaction phenomena and flat band properties such as correlated insulator transition, superconductivity and ferromagnetism at certain magic angles. Here, we pres
Using the semiclassical quantum Boltzmann equation (QBE), we numerically calculate the DC transport properties of bilayer graphene near charge neutrality. We find, in contrast to prior discussions, that phonon scattering is crucial even at temperatur