ﻻ يوجد ملخص باللغة العربية
Twisted bilayer graphene provides a new two-dimensional platform for studying electron interaction phenomena and flat band properties such as correlated insulator transition, superconductivity and ferromagnetism at certain magic angles. Here, we present strong evidence of correlated insulator states and superconductivity signatures in p-type twisted double-bilayer WSe$_2$. Enhanced interlayer interactions are observed when the twist angle decreases to a few degrees as reflected by the high-order satellites in the electron diffraction patterns taken from the 2H/3R-stacked domains reconstructed from a conventional Moire superlattice. In contrast to twisted bilayer graphene, there is no specific magic angle for twisted WSe$_2$. The flat band properties are observed at twist angles ranging from 1 to 4 degrees. The highest superconducting transition temperature observed by transport measurement is 6 K. Our work has facilitated future study in the area of flat band related properties in twisted transition metal dichalcogenide layered structures.
Recently, it has been pointed out that the twisting of bilayer WSe$_2$ would generate topologically non-trivial flat bands near the Fermi energy. In this work, we show that twisted bilayer WSe$_2$ (tWSe$_2$) with uniaxial strain exhibits a large nonl
We study the influence of strong spin-orbit interaction on the formation of flat bands in relaxed twisted bilayer WSe$_2$. Flat bands, well separated in energy, emerge at the band edges for twist angles ($theta$) close to 0$^o$ and 60$^o$. For $theta
Magic-angle twisted bilayer graphene (TBG), with rotational misalignment close to 1.1$^circ$, features isolated flat electronic bands that host a rich phase diagram of correlated insulating, superconducting, ferromagnetic, and topological phases. The
A finite Berry curvature dipole can induce a nonlinear Hall effect in which a charge current induces a second harmonic transverse electric voltage under time-reversal-symmetric condition. Here, we report the transport measurement of giant nonlinear H
We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe$_2$ barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases