ﻻ يوجد ملخص باللغة العربية
In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e. at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called `mirror-less cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in 2D photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first order differential equations, solved using the Greens function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data.
We develop a rigorous, field-theoretical approach to the study of spontaneous emission in inertial and dissipative nematic liquid crystals, disclosing an alternative application of the massive Stueckelberg gauge theory to describe critical phenomena
We measure fast carrier decay rates (6 ps) in GaAs photonic crystal cavities with resonances near the GaAs bandgap energy at room temperature using a pump-probe measurement. Carriers generated via photoexcitation using an above-band femtosecond pulse
We present time-resolved emission experiments of semiconductor quantum dots in silicon 3D inverse-woodpile photonic band gap crystals. A systematic study is made of crystals with a range of pore radii to tune the band gap relative to the emission fre
We measure localized and extended mode profiles at the band edge of slow-light photonic-crystal waveguides using phase-sensitive near-field microscopy. High-resolution band structures are obtained and interpreted, allowing the retrieval of the optica
We describe a smooth transition from (fully ordered) photonic crystal to (fully disordered) photonic glass that enables us to make an accurate measurement of the scattering mean free path in nanostructured media and, in turn, establishes the dominant