ترغب بنشر مسار تعليمي؟ اضغط هنا

Tractable and Robust Modeling of Building Flexibility Using Coarse Data

55   0   0.0 ( 0 )
 نشر من قبل Jesus Contreras-Oca\\~na
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Controllable building loads have the potential to increase the flexibility of power systems. A key step in developing effective and attainable load control policies is modeling the set of feasible building load profiles. In this paper, we consider buildings whose source of flexibility is their HVAC loads. We propose a data-driven method to empirically estimate a robust feasible region of the load using coarse data, that is, using only total building load and average indoor temperatures. The proposed method uses easy-to-gather coarse data and can be adapted to buildings of any type. The resulting feasible region model is robust to temperature prediction errors and is described by linear constraints. The mathematical simplicity of these constraints makes the proposed model adaptable to many power system applications, for example, economic dispatch, and optimal power flow. We validate our model using data from EnergyPlus and demonstrate its usefulness through a case study in which flexible building loads are used to balance errors in wind power forecasts.

قيم البحث

اقرأ أيضاً

We introduce a general framework for robust data-enabled predictive control (DeePC) for linear time-invariant (LTI) systems. The proposed framework enables us to obtain model-free optimal control for LTI systems based on noisy input/output data. More specifically, robust DeePC solves a min-max optimization problem to compute the optimal control sequence that is resilient to all possible realizations of the uncertainties in the input/output data within a prescribed uncertainty set. We present computationally tractable reformulations of the min-max problem with various uncertainty sets. Furthermore, we show that even though an accurate prediction of the future behavior is unattainable in practice due to inaccessibility of the perfect input/output data, the obtained robust optimal control sequence provides performance guarantees for the actually realized input/output cost. We further show that the robust DeePC generalizes and robustifies the regularized DeePC (with quadratic regularization or 1-norm regularization) proposed in the literature. Finally, we demonstrate the performance of the proposed robust DeePC algorithm on high-fidelity, nonlinear, and noisy simulations of a grid-connected power converter system.
Uncertainty sets are at the heart of robust optimization (RO) because they play a key role in determining the RO models tractability, robustness, and conservativeness. Different types of uncertainty sets have been proposed that model uncertainty from various perspectives. Among them, polyhedral uncertainty sets are widely used due to their simplicity and flexible structure to model the underlying uncertainty. However, the conventional polyhedral uncertainty sets present certain disadvantages; some are too conservative while others lead to computationally expensive RO models. This paper proposes a systematic approach to develop data-driven polyhedral uncertainty sets that mitigate these drawbacks. The proposed uncertainty sets are polytopes induced by a given set of scenarios, capture correlation information between uncertain parameters, and allow for direct trade-offs between tractability and conservativeness issue of conventional polyhedral uncertainty sets. To develop these uncertainty sets, we use principal component analysis (PCA) to transform the correlated scenarios into their uncorrelated principal components and to shrink the uncertainty space dimensionality. Thus, decision-makers can use the number of the leading principal components as a tool to trade-off tractability, conservativeness, and robustness of RO models. We quantify the quality of the lower bound of a static RO problem with a scenario-induced uncertainty set by deriving a theoretical bound on the optimality gap. Additionally, we derive probabilistic guarantees for the performance of the proposed scenario-induced uncertainty sets by developing explicit lower bounds on the number of scenarios. Finally, we demonstrate the practical applicability of the proposed uncertainty sets to trade-off tractability, robustness, and conservativeness by examining a range of knapsack and power grid problems.
83 - Yiling Zhang , Jin Dong 2021
Aggregation of heating, ventilation, and air conditioning (HVAC) loads can provide reserves to absorb volatile renewable energy, especially solar photo-voltaic (PV) generation. However, the time-varying PV generation is not perfectly known when the s ystem operator decides the HVAC control schedules. To consider the unknown uncertain PV generation, in this paper, we formulate a distributionally robust chance-constrained (DRCC) building load control problem under two typical ambiguity sets: the moment-based and Wasserstein ambiguity sets. We derive mixed-integer linear programming (MILP) reformulations for DRCC problems under both sets. Especially for the DRCC problem under the Wasserstein ambiguity set, we utilize the right-hand side (RHS) uncertainty to derive a more compact MILP reformulation than the commonly known MILP reformulations with big-M constants. All the results also apply to general individual chance constraints with RHS uncertainty. Furthermore, we propose an adjustable chance-constrained variant to achieve a trade-off between the operational risk and costs. We derive MILP reformulations under the Wasserstein ambiguity set and second-order conic programming (SOCP) reformulations under the moment-based set. Using real-world data, we conduct computational studies to demonstrate the efficiency of the solution approaches and the effectiveness of the solutions.
183 - N.H. Chieu , J.W. Feng , W. Gao 2017
In this paper, we introduce a new class of nonsmooth convex functions called SOS-convex semialgebraic functions extending the recently proposed notion of SOS-convex polynomials. This class of nonsmooth convex functions covers many common nonsmooth fu nctions arising in the applications such as the Euclidean norm, the maximum eigenvalue function and the least squares functions with $ell_1$-regularization or elastic net regularization used in statistics and compressed sensing. We show that, under commonly used strict feasibility conditions, the optimal value and an optimal solution of SOS-convex semi-algebraic programs can be found by solving a single semi-definite programming problem (SDP). We achieve the results by using tools from semi-algebraic geometry, convex-concave minimax theorem and a recently established Jensen inequality type result for SOS-convex polynomials. As an application, we outline how the derived results can be applied to show that robust SOS-convex optimization problems under restricted spectrahedron data uncertainty enjoy exact SDP relaxations. This extends the existing exact SDP relaxation result for restricted ellipsoidal data uncertainty and answers the open questions left in [Optimization Letters 9, 1-18(2015)] on how to recover a robust solution from the semi-definite programming relaxation in this broader setting.
We consider general, steady, balanced flows of a commodity over a network where an instance of the network flow is characterized by edge flows and nodal potentials. Edge flows in and out of a node are assumed to be conserved, thus representing standa rd network flow relations. The remaining freedom in the flow distribution over the network is constrained by potentials so that the difference of potentials at the head and the tail of an edge is expressed as a nonlinear function of the edge flow. We consider networks with nodes divided into three categories: sources that inject flows into the network for a certain cost, terminals which buy the flow at a fixed price and internal customers each withdrawing an uncertain amount of flow, which has a priority and thus it is not priced. Our aim is to operate the network such that the profit, i.e. amount of flow sold to terminals minus cost of injection, is maximized, while maintaining the potentials within prescribed bounds. We also require that the operating point is robust with respect to the uncertainty of customers withdrawals. In this setting we prove that potentials are monotonic functions of the withdrawals. This observation enables us to replace in the maximum profit optimization infinitely many nodal constraints, each representing a particular value of withdrawal uncertainty, by only two constraints representing the cases where all nodes with uncertainty consume their minimum and maximum amounts respectively. We illustrate this general result on example of the natural gas transmission network. In this enabling example gas withdrawals by consumers are assumed uncertain, the potentials are gas pressures squared, the potential drop functions are bilinear in the flow and its intensity with an added tunable factor representing compression.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا