ﻻ يوجد ملخص باللغة العربية
Uncertainty sets are at the heart of robust optimization (RO) because they play a key role in determining the RO models tractability, robustness, and conservativeness. Different types of uncertainty sets have been proposed that model uncertainty from various perspectives. Among them, polyhedral uncertainty sets are widely used due to their simplicity and flexible structure to model the underlying uncertainty. However, the conventional polyhedral uncertainty sets present certain disadvantages; some are too conservative while others lead to computationally expensive RO models. This paper proposes a systematic approach to develop data-driven polyhedral uncertainty sets that mitigate these drawbacks. The proposed uncertainty sets are polytopes induced by a given set of scenarios, capture correlation information between uncertain parameters, and allow for direct trade-offs between tractability and conservativeness issue of conventional polyhedral uncertainty sets. To develop these uncertainty sets, we use principal component analysis (PCA) to transform the correlated scenarios into their uncorrelated principal components and to shrink the uncertainty space dimensionality. Thus, decision-makers can use the number of the leading principal components as a tool to trade-off tractability, conservativeness, and robustness of RO models. We quantify the quality of the lower bound of a static RO problem with a scenario-induced uncertainty set by deriving a theoretical bound on the optimality gap. Additionally, we derive probabilistic guarantees for the performance of the proposed scenario-induced uncertainty sets by developing explicit lower bounds on the number of scenarios. Finally, we demonstrate the practical applicability of the proposed uncertainty sets to trade-off tractability, robustness, and conservativeness by examining a range of knapsack and power grid problems.
Stochastic model predictive control (SMPC) has been a promising solution to complex control problems under uncertain disturbances. However, traditional SMPC approaches either require exact knowledge of probabilistic distributions, or rely on massive
We consider optimization problems with uncertain constraints that need to be satisfied probabilistically. When data are available, a common method to obtain feasible solutions for such problems is to impose sampled constraints, following the so-calle
This paper studies distributionally robust optimization (DRO) when the ambiguity set is given by moments for the distributions. The objective and constraints are given by polynomials in decision variables. We reformulate the DRO with equivalent momen
Optimal control of a stochastic dynamical system usually requires a good dynamical model with probability distributions, which is difficult to obtain due to limited measurements and/or complicated dynamics. To solve it, this work proposes a data-driv
A novel data-driven stochastic robust optimization (DDSRO) framework is proposed for optimization under uncertainty leveraging labeled multi-class uncertainty data. Uncertainty data in large datasets are often collected from various conditions, which