ترغب بنشر مسار تعليمي؟ اضغط هنا

InP femtosecond mode-locked laser in a compound feedback cavity with a switchable repetition rate

85   0   0.0 ( 0 )
 نشر من قبل Mu-Chieh Lo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A monolithically integrated mode-locked semiconductor laser is proposed. The compound ring cavity is composed of a colliding pulse mode-locking (ML) subcavity and a passive Fabry-Perot feedback subcavity. These two 1.6 mm long subcavities are coupled by using on-chip reflectors at both ends, enabling harmonic mode locking. By changing DC-bias conditions, optical mode spacing from 50 to 450 GHz is experimentally demonstrated. Ultrafast pulses shorter than 0.3 ps emitted from this laser diode are shown in autocorrelation traces.

قيم البحث

اقرأ أيضاً

We show that a 1.13-GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz - 10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be di rectly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-walled carbon nanotube (SWCNT)-coated mirrors. To our knowledge, this is the lowest timing jitter optical pulse train with the GHz repetition rate ever measured. If this pulse train is used for direct sampling of 565-MHz signals (Nyquist frequency of the pulse train), the demonstrated jitter level corresponds to the projected effective-number-of-bit (ENOB) of 17.8, which is much higher than the thermal noise limit of 50-ohm load resistance (~14 bits).
We present the first direct observation of the bound state of multiple dissipative optical solitons in which bond length and bond strength can be individually controlled in a broad range in a regular manner. We have observed experimentally a new type of stable and extremely elastic soliton crystals that can be stretched and compressed many times conserving their structure by adjusting the bond properties in real time in a specially designed passively mode-locked fiber laser incorporating highly asymmetric tunable Mach-Zehnder interferometer. The temporal structure and dynamics of the generated soliton crystals have been studied using an asynchronous optical sampling system with picosecond resolution. We demonstrated that stable and robust soliton crystal can be formed by two types of primitive structures: single dissipative solitons, and(or) pairs of dissipative soliton and pulse with lower amplitude. Continuous stretching and compression of a soliton crystal with extraordinary high ratio of more than 30 has been demonstrated with a smallest recorded separation between pulses as low as 5 ps corresponding to an effective repetition frequency of 200 GHz. Collective pulse dynamics, including soliton crystal self-assembling, cracking and transformation of crystals comprising pulse pairs to the crystals of similar pulses has been observed experimentally.
Continuous-wave mode-locked femtosecond 2 um solid-state laser with a c-cut Tm:CaYAlO4 as gain medium was experimentally demonstrated. The mode locked laser generated stable pulses with average output power as high as 531 mW, pulse duration of 496 fs , and repetition rate of 97 MHz at 1975 nm. The research results show that Tm:CaYAlO4 is an excellent gain medium for femtosecond pulse generation at 2um wavelength.
High frequency fluctuation in the optical signal generated in Fourier-Domain Mode Locked fiber laser (FDML-FL), which is the major problem and degrades the laser performance, is not yet fully analyzed or studied. The basic theory which is causing thi s high frequency fluctuation is required to clearly understand its dynamics and to control it for various applications. In this letter, by analyzing the signal and system dynamics of FDML-FL, we theoretically demonstrate that the high frequency fluctuation is induced by the intrinsic instability of frequency offset of the signal in cavity with nonlinear gain and spectral filter. Unlike the instabilities observed in other laser cavities this instability is very unique to FDML-FL as the central frequency of the optical signal continuously shifts away from the center frequency of the filter due to the effects like dispersion and/or nonlinearity. This instability is none other than the Eckhaus instability reported and well studied in fluid dynamics governed by real Ginzburg-Landau equation.
We consider a two-color formaldehyde PLIF thermometry scheme using a wavelength-switching injection seeding Nd:YAG laser at 355 nm. The 28183.5 cm-1 and 28184.5 cm-1 peaks of formaldehyde are used to measure low temperature combustion zone. Using a b urst mode amplifier and a high speed camera, high-repetition rate (20 kHz) temperature field measurement is validated on a laminar coflow diffusion flame and demonstrated on a turbulent confined jet in hot crossflow flame.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا