ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracing crystal-field splittings in the rare earth-based intermetallic CeIrIn$_5$

464   0   0.0 ( 0 )
 نشر من قبل QiuYun Chen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Crystal electric field states in rare earth intermetallics show an intricate entanglement with the many-body physics that occurs in these systems and that is known to lead to a plethora of electronic phases. Here, we attempt to trace different contributions to the crystal electric field (CEF) splittings in CeIrIn$_5$, a heavy-fermion compound and member of the Ce$M$In$_5$ ($M$= Co, Rh, Ir) family. To this end, we utilize high-resolution resonant angle-resolved photoemission spectroscopy (ARPES) and present a spectroscopic study of the electronic structure of this unconventional superconductor over a wide temperature range. As a result, we show how ARPES can be used in combination with thermodynamic measurements or neutron scattering to disentangle different contributions to the CEF splitting in rare earth intermetallics. We also find that the hybridization is stronger in CeIrIn$_5$ than CeCoIn$_5$ and the effects of the hybridization on the Fermi volume increase is much smaller than predicted. By providing the first experimental evidence for $4f_{7/2}^{1}$ splittings which, in CeIrIn$_5$, split the octet into four doublets, we clearly demonstrate the many-body origin of the so-called $4f_{7/2}^{1}$ state.



قيم البحث

اقرأ أيضاً

We report a systematic study of temperature- and field-dependent charge ($boldsymbol{rho}$) and entropy ($mathbf{S}$) transport in the heavy-fermion superconductor CeIrIn$_5$. Its large positive thermopower $S_{xx}$ is typical of Ce-based Kondo latti ce systems, and strong electronic correlations play an important role in enhancing the Nernst signal $S_{xy}$. By separating the off-diagonal Peltier coefficient $alpha_{xy}$ from $S_{xy}$, we find that $alpha_{xy}$ becomes positive and greatly enhanced at temperatures well above the bulk $T_c$. Compared with the non-magnetic analog LaIrIn$_5$, these results suggest vortexlike excitations in a precursor state to unconventional superconductivity in CeIrIn$_5$. This study sheds new light on the similarity of heavy-fermion and cuprate superconductors and on the possibility of states not characterized by the amplitude of an order parameter.
YbMgGaO$_{4}$, a structurally perfect two-dimensional triangular lattice with odd number of electrons per unit cell and spin-orbit entangled effective spin-1/2 local moments of Yb$^{3+}$ ions, is likely to experimentally realize the quantum spin liqu id ground state. We report the first experimental characterization of single crystal YbMgGaO$_{4}$ samples. Due to the spin-orbit entanglement, the interaction between the neighboring Yb$^{3+}$ moments depends on the bond orientations and is highly anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively determine the couplings. Our result is a first step towards the theoretical understanding of the possible quantum spin liquid ground state in this system and sheds new lights on the search of quantum spin liquids in strong spin-orbit coupled insulators.
147 - P. Novak , K. Knizek , 2013
A method to calculate the crystal field parameters {it ab initio} is proposed and applied to trivalent rare earth impurities in yttrium aluminate and to Tb$^{3+}$ ion in TbAlO$_3$. To determine crystal field parameters local Hamiltonian expressed in basis of Wannier functions is expanded in a series of spherical tensor operators. Wannier functions are obtained by transforming the Bloch functions calculated using the density functional theory based program. The results show that the crystal field is continuously decreasing as the number of $4f$ electrons increases and that the hybridization of $4f$ states with the states of oxygen ligands is important. Theory is confronted with experiment for Nd$^{3+}$ and Er$^{3+}$ ions in YAlO$_3$ and for Tb$^{3+}$ ion in TbAlO$_3$ and a fair agreement is found.
Alkali metal rare-earth chalcogenide $ARECh2$ (A=alkali or monovalent metal, RE=rare earth, Ch=O, S, Se, Te), is a large family of quantum spin liquid (QSL) candidates we discovered recently. Unlike $YbMgGaO4$, most members in the family except for t he oxide ones, have relatively small crystalline electric-field (CEF) excitation levels, particularly the first ones. This makes the conventional Curie-Weiss analysis at finite temperatures inapplicable and CEF excitations may play an essential role in understanding the low-energy spin physics. Here we considered an effective magnetic Hamiltonian incorporating CEF excitations and spin-spin interactions, to accurately describe thermodynamics in such a system. By taking $NaYbSe2$ as an example, we were able to analyze magnetic susceptibility, magnetization under pulsed high fields and heat capacity in a systematic and comprehensive way. The analysis allows us to produce accurate anisotropic exchange coupling energies and unambiguously determine a crossover temperature ($sim$25 K in the case of $NaYbSe2$), below which CEF effects fade away and pure spin-spin interactions stand out. We further validated the effective picture by successfully explaining the anomalous temperature dependence of electron spin resonance (ESR) spectral width. The effective scenario in principle can be generalized to other rare-earth spin systems with small CEF excitations.
Identifying the nature of magnetism, itinerant or localized, remains a major challenge in condensed-matter science. Purely localized moments appear only in magnetic insulators, whereas itinerant moments more or less co-exist with localized moments in metallic compounds such as the doped-cuprate or the iron-based superconductors, hampering a thorough understanding of the role of magnetism in phenomena like superconductivity or magnetoresistance. Here we distinguish two antiferromagnetic modulations with respective propagation wave vectors of $Q_{pm}$ = ($H pm 0.557(1)$, 0, $L pm 0.150(1)$) and $Q_text{C}$ = ($H pm 0.564(1)$, 0, $L$), where $left(H, Lright)$ are allowed Miller indices, in an ErPd$_2$Si$_2$ single crystal by neutron scattering and establish their respective temperature- and field-dependent phase diagrams. The modulations can co-exist but also compete depending on temperature or applied field strength. They couple differently with the underlying lattice albeit with associated moments in a common direction. The $Q_{pm}$ modulation may be attributed to localized 4emph{f} moments while the $Q_text{C}$ correlates well with itinerant conduction bands, supported by our transport studies. Hence, ErPd$_2$Si$_2$ represents a new model compound that displays clearly-separated itinerant and localized moments, substantiating early theoretical predictions and providing a unique platform allowing the study of itinerant electron behavior in a localized antiferromagnetic matrix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا