ترغب بنشر مسار تعليمي؟ اضغط هنا

Reasoning in a Hierarchical System with Missing Group Size Information

56   0   0.0 ( 0 )
 نشر من قبل Subhash Kak
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Subhash Kak




اسأل ChatGPT حول البحث

The paper analyzes the problem of judgments or preferences subsequent to initial analysis by autonomous agents in a hierarchical system where the higher level agents does not have access to group size information. We propose methods that reduce instances of preference reversal of the kind encountered in Simpsons paradox.



قيم البحث

اقرأ أيضاً

Reasoning about the behaviour of physical objects is a key capability of agents operating in physical worlds. Humans are very experienced in physical reasoning while it remains a major challenge for AI. To facilitate research addressing this problem, several benchmarks have been proposed recently. However, these benchmarks do not enable us to measure an agents granular physical reasoning capabilities when solving a complex reasoning task. In this paper, we propose a new benchmark for physical reasoning that allows us to test individual physical reasoning capabilities. Inspired by how humans acquire these capabilities, we propose a general hierarchy of physical reasoning capabilities with increasing complexity. Our benchmark tests capabilities according to this hierarchy through generated physical reasoning tasks in the video game Angry Birds. This benchmark enables us to conduct a comprehensive agent evaluation by measuring the agents granular physical reasoning capabilities. We conduct an evaluation with human players, learning agents, and heuristic agents and determine their capabilities. Our evaluation shows that learning agents, with good local generalization ability, still struggle to learn the underlying physical reasoning capabilities and perform worse than current state-of-the-art heuristic agents and humans. We believe that this benchmark will encourage researchers to develop intelligent agents with advanced, human-like physical reasoning capabilities. URL: https://github.com/Cheng-Xue/Hi-Phy
67 - Lihui Liu , Boxin Du , Heng Ji 2020
Reasoning is a fundamental capability for harnessing valuable insight, knowledge and patterns from knowledge graphs. Existing work has primarily been focusing on point-wise reasoning, including search, link predication, entity prediction, subgraph ma tching and so on. This paper introduces comparative reasoning over knowledge graphs, which aims to infer the commonality and inconsistency with respect to multiple pieces of clues. We envision that the comparative reasoning will complement and expand the existing point-wise reasoning over knowledge graphs. In detail, we develop KompaRe, the first of its kind prototype system that provides comparative reasoning capability over large knowledge graphs. We present both the system architecture and its core algorithms, including knowledge segment extraction, pairwise reasoning and collective reasoning. Empirical evaluations demonstrate the efficacy of the proposed KompaRe.
Background Knowledge graphs (KGs), especially medical knowledge graphs, are often significantly incomplete, so it necessitating a demand for medical knowledge graph completion (MedKGC). MedKGC can find new facts based on the exited knowledge in the K Gs. The path-based knowledge reasoning algorithm is one of the most important approaches to this task. This type of method has received great attention in recent years because of its high performance and interpretability. In fact, traditional methods such as path ranking algorithm (PRA) take the paths between an entity pair as atomic features. However, the medical KGs are very sparse, which makes it difficult to model effective semantic representation for extremely sparse path features. The sparsity in the medical KGs is mainly reflected in the long-tailed distribution of entities and paths. Previous methods merely consider the context structure in the paths of the knowledge graph and ignore the textual semantics of the symbols in the path. Therefore, their performance cannot be further improved due to the two aspects of entity sparseness and path sparseness. To address the above issues, this paper proposes two novel path-based reasoning methods to solve the sparsity issues of entity and path respectively, which adopts the textual semantic information of entities and paths for MedKGC. By using the pre-trained model BERT, combining the textual semantic representations of the entities and the relationships, we model the task of symbolic reasoning in the medical KG as a numerical computing issue in textual semantic representation.
Human reasoning can often be understood as an interplay between two systems: the intuitive and associative (System 1) and the deliberative and logical (System 2). Neural sequence models -- which have been increasingly successful at performing complex , structured tasks -- exhibit the advantages and failure modes of System 1: they are fast and learn patterns from data, but are often inconsistent and incoherent. In this work, we seek a lightweight, training-free means of improving existing System 1-like sequence models by adding System 2-inspired logical reasoning. We explore several variations on this theme in which candidate generations from a neural sequence model are examined for logical consistency by a symbolic reasoning module, which can either accept or reject the generations. Our approach uses neural inference to mediate between the neural System 1 and the logical System 2. Results in robust story generation and grounded instruction-following show that this approach can increase the coherence and accuracy of neurally-based generations.
81 - I.M. Son , S.I. Kwak , U.J. Han 2020
This paper presents an original method of fuzzy approximate reasoning that can open a new direction of research in the uncertainty inference of Artificial Intelligence(AI) and Computational Intelligence(CI). Fuzzy modus ponens (FMP) and fuzzy modus t ollens(FMT) are two fundamental and basic models of general fuzzy approximate reasoning in various fuzzy systems. And the reductive property is one of the essential and important properties in the approximate reasoning theory and it is a lot of applications. This paper suggests a kind of extended distance measure (EDM) based approximate reasoning method in the single input single output(SISO) fuzzy system with discrete fuzzy set vectors of different dimensions. The EDM based fuzzy approximate reasoning method is consists of two part, i.e., FMP-EDM and FMT-EDM. The distance measure based fuzzy reasoning method that the dimension of the antecedent discrete fuzzy set is equal to one of the consequent discrete fuzzy set has already solved in other paper. In this paper discrete fuzzy set vectors of different dimensions mean that the dimension of the antecedent discrete fuzzy set differs from one of the consequent discrete fuzzy set in the SISO fuzzy system. That is, this paper is based on EDM. The experimental results highlight that the proposed approximate reasoning method is comparatively clear and effective with respect to the reductive property, and in accordance with human thinking than existing fuzzy reasoning methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا