ﻻ يوجد ملخص باللغة العربية
We consider the evolution of a decaying passive scalar in the presence of a gaussian white noise fluctuating linear shear flow known as the Majda Model. We focus on deterministic initial data and establish the symmetry properties of the evolving point wise probability measure for the random scalar. We identify, for both point line source initial data, regions in the x-y plane outside of which the PDF skewness is sign definite for all time, while inside these regions we observe multiple sign changes corresponding to exchanges in symmetry between hot and cold leaning states using exact representation formula for the PDF at the origin, and away from the origin, using numerical evaluation of the exact available Mehler kernels for the scalars statistical moments. A new, rapidly convergent Monte-Carlo method is developed, dubbed Direct Monte-Carlo (DMC), using the random Greens functions allowing for the fast construction of the PDF for single point statistics, and multi-point statistics natural for full Monte-Carlo simulations of the underlying stochastic differential equations (FMC). This new method demonstrates the full evolution of the PDF from short times, to its long time, limiting and collapsing universal distribution at arbitrary points in the plane. Further, this method provides a strong benchmark for FMC and we document numbers of field realization criteria for the FMC to faithfully compute this complete dynamics. Armed with this benchmark, we apply the FMC to a channel with a no-flux boundary condition enforced on a channel and observe a dramatically different long time state resulting from the wall. In particular, the channel case collapsing invariant measure has negative skewness, with random states heavily leaning heavily towards the hot state, in stark contrast to free space, where the limiting skewness is positive, with its states leaning heavily towards the cold state.
We extend our previous results characterizing the loading properties of a diffusing passive scalar advected by a laminar shear flow in ducts and channels to more general cross-sectional shapes, including regular polygons and smoothed corner ducts ori
The reduction of dimensionality of physical systems, specially in fluid dynamics, leads in many situations to nonlinear ordinary differential equations which have global invariant manifolds with algebraic expressions containing relevant physical info
The advection and mixing of a scalar quantity by fluid flow is an important problem in engineering and natural sciences. If the fluid is turbulent, the statistics of the passive scalar exhibit complex behavior. This paper is concerned with two Lagran
We develop a mean-field theory of compressibility effects in turbulent magnetohydrodynamics and passive scalar transport using the quasi-linear approximation and the spectral $tau$-approach. We find that compressibility decreases the $alpha$ effect a
We study transport of a weakly diffusive pollutant (a passive scalar) by thermoconvective flow in a fluid-saturated horizontal porous layer heated from below under frozen parametric disorder. In the presence of disorder (random frozen inhomogeneities