ترغب بنشر مسار تعليمي؟ اضغط هنا

First-principles theory of giant Rashba-like spin-splitting in bulk ferroelectrics

132   0   0.0 ( 0 )
 نشر من قبل Louis Ponet
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently large Rashba-like spin splitting has been observed in certain bulk ferroelectrics. In contrast with the relativistic Rashba effect, the chiral spin texture and large spin-splitting of the electronic bands depend strongly on the character of the band and atomic spin-orbit coupling. We establish that this can be traced back to the so-called orbital Rashba effect, also in the bulk. This leads to an additional dependence on the orbital composition of the bands, which is crucial for a complete picture of the effect. Results from first-principles calculations on ferroelectic GeTe verify the key predictions of the model.



قيم البحث

اقرأ أيضاً

We calculate the bulk photovoltaic response of the ferroelectrics BaTiO$_3$ and PbTiO$_3$ from first principles by applying shift current theory to the electronic structure from density functional theory. The first principles results for BaTiO$_3$ re produce eperimental photocurrent direction and magnitude as a function of light frequency, as well as the dependence of current on light polarization, demonstrating that shift current is the dominant mechanism of the bulk photovoltaic effect in BaTiO$_3$. Additionally, we analyze the relationship between response and material properties in detail. The photocurrent does not depend simply or strongly on the magnitude of material polarization, as has been previously assumed; instead, electronic states with delocalized, covalent bonding that is highly asymmetric along the current direction are required for strong shift current enhancements. The complexity of the response dependence on both external and material parameters suggests applications not only in solar energy conversion, but to photocatalysis and sensor and switch type devices as well.
85 - Di Wang , Feng Tang , Yongping Du 2017
In 5d transition metal oxides, novel properties arise from the interplay of electron correlations and spin--orbit interactions. Na4IrO4, where 5d transition-metal Ir atom occupies the center of the square-planar coordination environment, is synthesiz ed. Based on density functional theory, we calculate its electronic and magnetic properties. Our numerical results show that the Ir-5d bands are quite narrow, and the bands around the Fermi level are mainly contributed by d_{xy},d_{yz} and d_{zx} orbitals. The magnetic easy-axis is perpendicular to the IrO4 plane, and the magnetic anisotropy energy (MAE) of Na4IrO4 is found to be very giant. We estimate the magnetic parameters by mapping the calculated total energy for different spin configurations onto a spin model. The next nearest neighbor exchange interaction J2 is much larger than other intersite exchange interactions and results in the magnetic ground state configuration. Our study clearly demonstrates that the huge MAE comes from the single-ion anisotropy rather than the anisotropic interatomic spin exchange. This compound has a large spin gap but very narrow spin-wave dispersion, due to the large single-ion anisotropy and relatively small exchange couplings. Noticing this remarkable magnetic feature originated from its highly isolated IrO4 moiety, we also explore the possiblity to further enhance the MAE.
247 - Ya Feng , Qi Jiang , Baojie Feng 2019
Spin-orbit coupling (SOC) has gained much attention for its rich physical phenomena and highly promising applications in spintronic devices. The Rashba-type SOC in systems with inversion symmetry breaking is particularly attractive for spintronics ap plications since it allows for flexible manipulation of spin current by external electric fields. Here, we report the discovery of a giant anisotropic Rashba-like spin splitting along three momentum directions (3D Rashba-like spin splitting) with a helical spin polarization around the M points in the Brillouin zone of trigonal layered PtBi2. Due to its inversion asymmetry and reduced symmetry at the M point, Rashba-type as well as Dresselhaus-type SOC cooperatively yield a 3D spin splitting with alpha~ 4.36 eVA in PtBi2. The experimental realization of 3D Rashba-like spin splitting not only has fundamental interests but also paves the way to the future exploration of a new class of material with unprecedented functionalities for spintronics applications.
In systems with broken inversion symmetry spin-orbit coupling (SOC) yields a Rashba-type spin splitting of electronic states, manifested in a k-dependent splitting of the bands. While most research had previously focused on 2D electron systems, recen tly a three-dimensional (3D) form of such Rashba-effect was found in a series of bismuth tellurohalides. Whereas these materials exhibit a very large spin-splitting, they lack an important property concerning functionalization, namely the possibility to switch or tune the spin texture. This limitation can be overcome in a new class of functional materials displaying Rashba-splitting coupled to ferroelectricity: the ferroelectric Rashba semiconductors (FERS). Using spin- and angle-resolved photoemission spectroscopy (SARPES) we show that GeTe(111) forms a prime member of this class, displaying a complex spin-texture for the Rashba-split surface and bulk bands arising from the intrinsic inversion symmetry breaking caused by the ferroelectric polarization of the bulk (FE). Apart from pure surface and bulk states we find surface-bulk resonant states (SBR) whose wavefunctions entangle the spinors from the bulk and surface contributions. At the Fermi level their hybridization results in unconventional spin topologies with cochiral helicities and concomitant gap opening. The GeTe(111) surface and SBR states make the semiconductor surface conducting. At the same time our SARPES data confirm that GeTe is a narrow-gap semiconductor, suggesting that GeTe(111) electronic states are endowed with spin properties that are theoretically challenging to anticipate. As the helicity of the spins in Rashba bands is connected to the direction of the FE polarization, this work paves the way to all-electric non-volatile control of spin-transport properties in semiconductors.
Strong Rashba effects at surfaces and interfaces have attracted great attention for basic scientific exploration and practical applications. Here, the first-principles investigation shows that giant and tunable Rashba effects can be achieved in KTaO$ _3$ (KTO) ultrathin films by applying biaxial stress. When increasing the in-plane compressive strain nearly to -5%, the Rashba spin splitting energy reaches $E_{R}=140$ meV, approximately corresponding to the Rashba coupling constant $alpha_{R}=1.3$ eV {AA}. We investigate its strain-dependent crystal structures, energy bands, and related properties, and thereby elucidate the mechanism for the giant Rashba effects. Furthermore, we show that giant Rashba spin splitting can be kept in the presence of SrTiO$_3$ capping layer and/or Si substrate, and strong circular photogalvanic effect can be achieved to generate spin-polarized currents in the KTO thin films or related heterostructures, which are promising for future spintronic and optoelectronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا