ترغب بنشر مسار تعليمي؟ اضغط هنا

Rashba-like spin splitting along three momentum directions in trigonal layered PtBi2

248   0   0.0 ( 0 )
 نشر من قبل Shaolong He
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-orbit coupling (SOC) has gained much attention for its rich physical phenomena and highly promising applications in spintronic devices. The Rashba-type SOC in systems with inversion symmetry breaking is particularly attractive for spintronics applications since it allows for flexible manipulation of spin current by external electric fields. Here, we report the discovery of a giant anisotropic Rashba-like spin splitting along three momentum directions (3D Rashba-like spin splitting) with a helical spin polarization around the M points in the Brillouin zone of trigonal layered PtBi2. Due to its inversion asymmetry and reduced symmetry at the M point, Rashba-type as well as Dresselhaus-type SOC cooperatively yield a 3D spin splitting with alpha~ 4.36 eVA in PtBi2. The experimental realization of 3D Rashba-like spin splitting not only has fundamental interests but also paves the way to the future exploration of a new class of material with unprecedented functionalities for spintronics applications.



قيم البحث

اقرأ أيضاً

Recently large Rashba-like spin splitting has been observed in certain bulk ferroelectrics. In contrast with the relativistic Rashba effect, the chiral spin texture and large spin-splitting of the electronic bands depend strongly on the character of the band and atomic spin-orbit coupling. We establish that this can be traced back to the so-called orbital Rashba effect, also in the bulk. This leads to an additional dependence on the orbital composition of the bands, which is crucial for a complete picture of the effect. Results from first-principles calculations on ferroelectic GeTe verify the key predictions of the model.
144 - C. Martin , E. D. Mun , H. Berger 2012
We report the observation of Shubnikov-de Haas (SdH) oscillations in single crystals of the Rashba spin-splitting compound BiTeI, from both longitudinal ($R_{xx}(B)$) and Hall ($R_{xy}(B)$) magnetoresistance. Under magnetic field up to 65 T, we resol ved unambiguously only one frequency $F = 284.3pm 1.3$ T, corresponding to a Fermi momentum $k_{F} = 0.093pm 0.002$AA$^{-1}$.The amplitude of oscillations is strongly suppressed by tilting magnetic field, suggesting a highly two-dimensional Fermi surface. Combining with optical spectroscopy, we show that quantum oscillations may be consistent with a bulk conduction band having a Rashba splitting momentum $k_{R}=0.046pm$AA$^{-1}$.
Ferroelectric Rashba semiconductors (FERSC), in which Rashba spin-splitting can be controlled and reversed by an electric field, have recently emerged as a new class of functional materials useful for spintronic applications. The development of concr ete devices based on such materials is, however, still hampered by the lack of robust FERSC compounds. Here, we show that the coexistence of large spontaneous polarisation and sizeable spin-orbit coupling is not sufficient to have strong Rashba effects and clarify why simple ferroelectric oxide perovskites with transition metal at the B-site are typically not suitable FERSC candidates. By rationalizing how this limitation can be by-passed through band engineering of the electronic structure in layered perovskites, we identify the Bi$_2$WO$_6$ Aurivillius crystal as the first robust ferroelectric with large and reversible Rashba spin-splitting, that can even be substantially doped without losing its ferroelectric properties. Importantly, we highlight that a unidirectional spin-orbit field arises in layered Bi$_2$WO$_6$, resulting in a protection against spin-decoherence.We highlight moreover that a unidirectional spin-orbit field arises in Bi$_2$WO$_6$, in which the spin-texture is so protected against spin-decoherence.
In transition metal perovskites (ABO3) most physical properties are tunable by structural parameters such as the rotation of the BO6 octahedra. Examples include the Neel temperature of orthoferrites, the conductivity of mixed-valence manganites, or t he band gap of rare-earth scandates. Since oxides often host large internal electric dipoles and can accommodate heavy elements, they also emerge as prime candidates to display Rashba spin-orbit coupling, through which charge and spin currents may be efficiently interconverted. However, despite a few experimental reports in SrTiO3-based interface systems, the Rashba interaction has been little studied in these materials, and its interplay with structural distortions remain unknown. In this Letter, we identify a bismuth-based perovskite with a giant, electrically-switchable Rashba interaction whose amplitude can be controlled by both the ferroelectric polarization and the breathing mode of oxygen octahedra. This particular structural parameter arises from the strongly covalent nature of the Bi-O bonds, reminiscent of the situation in perovskite nickelates. Our results not only provide novel strategies to craft agile spin-charge converters but also highlight the relevance of covalence as a powerful handle to design emerging properties in complex oxides.
The realization of multifunctional two-dimensional (2D) materials is fundamentally intriguing, such as combination of piezoelectricity with topological insulating phase or ferromagnetism. In this work, a Janus monolayer $mathrm{SrAlGaSe_4}$ is built from 2D $mathrm{MA_2Z_4}$ family with dynamic, mechanical and thermal stabilities, which is piezoelectric due to lacking inversion symmetry. The unstrained $mathrm{SrAlGaSe_4}$ monolayer is a narrow gap normal insulator (NI) with spin orbital coupling (SOC). However, the NI to topological insulator (TI) phase transition can be induced by the biaxial strain, and a piezoelectric quantum spin Hall insulator (PQSHI) can be achieved. More excitingly, the phase transformation point is only about 1.01 tensile strain, and nontrivial band topology can hold until considered 1.16 tensile strain. Moreover, a Rashba spin splitting in the conduction bands can exit in PQSHI due to the absence of a horizontal mirror symmetry and the presence of SOC. For monolayer $mathrm{SrAlGaSe_4}$, both in-plane and much weak out-of-plane piezoelectric polarizations can be induced with a uniaxial strain applied. The calculated piezoelectric strain coefficients $d_{11}$ and $d_{31}$ of monolayer $mathrm{SrAlGaSe_4}$ are -1.865 pm/V and -0.068 pm/V at 1.06 tensile strain as a representative TI. In fact, many PQSHIs can be realized from 2D $mathrm{MA_2Z_4}$ family. To confirm that, similar to $mathrm{SrAlGaSe_4}$, the coexistence of piezoelectricity and topological orders can be realized by strain (about 1.04 tensile strain) in the $mathrm{CaAlGaSe_4}$ monolayer. Our works suggest that Janus monolayer $mathrm{SrAlGaSe_4}$ is a pure 2D system for PQSHI, enabling future studies exploring the interplay between piezoelectricity and topological orders, which can lead to novel applications in electronics and spintronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا