ﻻ يوجد ملخص باللغة العربية
Optomechanical structures are well suited to study photon-phonon interactions, and they also turn out to be potential building blocks for phononic circuits and quantum computing. In phononic circuits, in which information is carried and processed by phonons, optomechanical structures could be used as interfaces to photons and electrons thanks to their excellent coupling efficiency. Among the components required for phononic circuits, such structures could be used to create coherent phonon sources and detectors. Complex functions other than emission or detection remain challenging and addressing a single structure in a full network proves a formidable challenge. Here, we propose and demonstrate a way to modulate the coherent emission from optomechanical crystals by external optical pumping, effectively creating a phonon switch working at ambient conditions of pressure and temperature and the working speed of which (5 MHz) is only limited by the mechanical motion of the optomechanical structure. We additionally demonstrate two other switching schemes: harmonic switching in which the mechanical mode remains active but different harmonics of the optical force are used, and switching to- and from the chaotic regime. Furthermore, the method presented here allows to select any single structure without affecting its surroundings, which is an important step towards freely controllable networks of optomechanical phonon emitters.
In the field of cavity optomechanics, proposals for quantum nondemolition (QND) measurements of phonon number provide a promising avenue by which one can study the quantum nature of nanoscale mechanical resonators. Here, we investigate these QND meas
Lasers differ from other light sources in that they are coherent, and their coherence makes them indispensable to both fundamental research and practical application. In optomechanical cavities, phonon and photon lasing is facilitated by the ability
The mechanical properties of light have found widespread use in the manipulation of gas-phase atoms and ions, helping create new states of matter and realize complex quantum interactions. The field of cavity-optomechanics strives to scale this intera
Recent nanofabrication technologies have miniaturized optical and mechanical resonators, and have led to a variety of novel optomechanical systems in which optical and mechanical modes are strongly coupled. Here we hybridize an optomechanical resonat
Electromagnetically induced transparency has great theoretical and experimental importance in many physics subjects, such as atomic physics, quantum optics, and more recent cavity optomechanics. Optical delay is the most prominent feature of electrom