ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon routing in integrated optomechanical cavity-waveguide systems

154   0   0.0 ( 0 )
 نشر من قبل Oskar Painter J
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mechanical properties of light have found widespread use in the manipulation of gas-phase atoms and ions, helping create new states of matter and realize complex quantum interactions. The field of cavity-optomechanics strives to scale this interaction to much larger, even human-sized mechanical objects. Going beyond the canonical Fabry-Perot cavity with a movable mirror, here we explore a new paradigm in which multiple cavity-optomechanical elements are wired together to form optomechanical circuits. Using a pair of optomechanical cavities coupled together via a phonon waveguide we demonstrate a tunable delay and filter for microwave-over-optical signal processing. In addition, we realize a tight-binding form of mechanical coupling between distant optomechanical cavities, leading to direct phonon exchange without dissipation in the waveguide. These measurements indicate the feasibility of phonon-routing based information processing in optomechanical crystal circuitry, and further, to the possibility of realizing topological phases of photons and phonons in optomechanical cavity lattices.

قيم البحث

اقرأ أيضاً

Electromagnetically induced transparency has great theoretical and experimental importance in many physics subjects, such as atomic physics, quantum optics, and more recent cavity optomechanics. Optical delay is the most prominent feature of electrom agnetically induced transparency, and in cavity optomechanics optical delay is limited by mechanical dissipation rate of sideband-resolved mechanical modes. Here we demonstrate a cascaded optical transparency scheme by leveraging the parametric phonon-phonon coupling in a multimode optomechanical system, where a low damping mechanical mode in the unresolved-sideband regime is made to couple to an intermediate, high frequency mechanical mode in the resolved-sideband regime of an optical cavity. Extended optical delay and higher transmission, as well as optical advancing are demonstrated. These results provide a route to realize ultra-long optical delay, indicating a significant step toward integrated classical and quantum information storage devices.
At low temperatures, microwave cavities are often preferred for the readout and control of a variety of systems. In this paper, we present design and measurements on an optomechanical device based on a 3-dimensional rectangular waveguide cavity. We s how that by suitably modifying the electromagnetic field corresponding to the fundamental mode of the cavity, the equivalent circuit capacitance can be reduced to 29 fF. By coupling a mechanical resonator to the modified electromagnetic mode of the cavity, we achieved a capacitance participation ratio of 43 $%$. We demonstrate an optomechanical cooperativity, $C$$sim$40, characterized by performing measurements in the optomechanically-induced absorption (OMIA) limit. In addition, due to a low-impedance environment between the two-halves of the cavity, our design has the flexibility of incorporating a DC bias across the mechanical resonator, often a desired feature in tunable optomechanical devices.
Optomechanical structures are well suited to study photon-phonon interactions, and they also turn out to be potential building blocks for phononic circuits and quantum computing. In phononic circuits, in which information is carried and processed by phonons, optomechanical structures could be used as interfaces to photons and electrons thanks to their excellent coupling efficiency. Among the components required for phononic circuits, such structures could be used to create coherent phonon sources and detectors. Complex functions other than emission or detection remain challenging and addressing a single structure in a full network proves a formidable challenge. Here, we propose and demonstrate a way to modulate the coherent emission from optomechanical crystals by external optical pumping, effectively creating a phonon switch working at ambient conditions of pressure and temperature and the working speed of which (5 MHz) is only limited by the mechanical motion of the optomechanical structure. We additionally demonstrate two other switching schemes: harmonic switching in which the mechanical mode remains active but different harmonics of the optical force are used, and switching to- and from the chaotic regime. Furthermore, the method presented here allows to select any single structure without affecting its surroundings, which is an important step towards freely controllable networks of optomechanical phonon emitters.
Micro- and nanomechanical resonators have emerged as promising platforms for sensing a broad range of physical properties such as mass, force, torque, magnetic field, and acceleration. The sensing performance relies critically on the motional mass, t he mechanical frequency, and the linewidth of the mechanical resonator. Here, we demonstrate a hetero optomechanical crystal (OMC) cavity based on a silicon nanobeam structure. The cavity supports phonon lasing in a fundamental mechanical mode with a frequency of 5.91 GHz, an effective mass of 116 fg, and a mechanical linewidth narrowing from 3.3 MHz to 5.2 kHz, while the optomechanical coupling rate of is as high as 1.9 MHz. With this phonon laser, the on-chip sensing with a resolution of $delta$$lambda$/$lambda$ = 1.0*10-8 can be attained, which is at least two orders of magnitude larger than that obtained with conventional silicon-based sensors. The use of a silicon-based hetero OMC cavity that harnesses phonon lasing could pave the way towards exciting, high-precision sensors that lend themselves to silicon monolithic integration and offer unprecedented sensitivity for broad physical sensing applications.
The negatively-charged NV$^-$-center in diamond has shown great success in nanoscale, high-sensitivity magnetometry. Efficient fluorescence detection is crucial for improving the sensitivity. Furthermore, integrated devices enable practicable sensors . Here, we present a novel architecture which allows us to create NV$^-$-centers a few nanometers below the diamond surface, and at the same time in the mode field maximum of femtosecond-laser-written type-II waveguides. We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing. The sensing task can be operated via the waveguide without direct light illumination through the sample, which marks an important step for magnetometry in biological systems which are fragile to light. In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا