ترغب بنشر مسار تعليمي؟ اضغط هنا

The Interstellar Extinction Toward the Milky Way Bulge with Planetary Nebulae, Red Clump, and RR Lyrae stars

108   0   0.0 ( 0 )
 نشر من قبل David Nataf
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David M. Nataf




اسأل ChatGPT حول البحث

I review the literature covering the issue of interstellar extinction toward the Milky Way bulge, with emphasis placed on findings from planetary nebulae, RR Lyrae, and red clump stars. I also report on observations from HI gas and globular clusters. I show that there has been substantial progress in this field in recent decades, most particularly from red clump stars. The spatial coverage of extinction maps has increased by a factor $sim 100 times$ in the past twenty years, and the total-to-selective extinction ratios reported have shifted by $sim$20-25%, indicative of the improved accuracy and separately, of a steeper-than-standard extinction curve. Problems remain in modelling differential extinction, explaining anomalies involving the planetary nebulae, and understanding the difference between bulge extinction coefficients and standard literature values.



قيم البحث

اقرأ أيضاً

The Hipparcos orbiting observatory has revealed a large number of helium-core-burning clump stars in the Galactic field. These low-mass stars exhibit signatures of extra-mixing processes that require modeling beyond the first dredge-up of standard mo dels. The 12C/13C ratio is the most robust diagnostic of deep mixing, because it is insensitive to the adopted stellar parameters. In this work we present 12C/13C determinations in a sample of 34 Galactic clump stars as well as abundances of nitrogen, carbon and oxygen. Abundances of carbon were studied using the C2 Swan (0,1) band head at 5635.5 A. The wavelength interval 7980-8130 A with strong CN features was analysed in order to determine nitrogen abundances and 12C/13C isotope ratios. The oxygen abundances were determined from the [O I] line at 6300 A. Compared with the Sun and dwarf stars of the Galactic disk, mean abundances in the investigated clump stars suggest that carbon is depleted by about 0.2 dex, nitrogen is enhanced by 0.2 dex and oxygen is close to abundances in dwarfs. Comparisons to evolutionary models show that the stars fall into two groups: the one is of first ascent giants with carbon isotope ratios altered according to the first dredge-up prediction, and the other one is of helium-core-burning stars with carbon isotope ratios altered by extra mixing. The stars investigated fall to these groups in approximately equal numbers.
Radial velocities of 2768 fundamental mode RR Lyrae stars (RRLs) toward the Southern Galactic bulge are presented, spanning the southern bulge from -8 < l < +8 and -3 < b <-6. Distances derived from the pulsation properties of the RRLs are combined w ith Gaia proper motions to give constraints on the orbital motions of 1389 RRLs. The majority (~75%) of the bulge RRLs have orbits consistent with these stars being permanently bound to <3.5 kpc from the Galactic Center, similar to the bar. However, unlike the bulge giants, the RRLs exhibit slower rotation and a higher velocity dispersion. The higher velocity dispersion arises almost exclusively from halo interlopers passing through the inner Galaxy. We present 82 stars with space velocities > 500 km/s and find that the majority of these high-velocity stars are halo interlopers; it is unclear if a sub-sample of these stars with similar space velocities have a common origin. Once the 25% of the sample represented by halo interlopers is cleaned, we can clearly discern two populations of bulge RRLs in the inner Galaxy. One population of RRLs is not as tightly bound to the Galaxy (but is still confined to the inner ~3.5 kpc), and is both spatially and kinematically consistent with the barred bulge. The second population is more centrally concentrated and does not trace the bar. One possible interpretation is that this population was born prior to bar formation, as its spatial location, kinematics and pulsation properties suggest, possibly from an accretion event at high redshift.
We study the line widths in the [ion{O}{3}]$lambda$5007 and H$alpha$ lines for two groups of planetary nebulae in the Milky Way bulge based upon spectroscopy obtained at the Observatorio Astronomico Nacional in the Sierra San Pedro Martir (OAN-SPM) u sing the Manchester Echelle Spectrograph. The first sample includes objects early in their evolution, having high H$beta$ luminosities, but [ion{O}{3}]$lambda 5007/mathrm Hbeta < 3$. The second sample comprises objects late in their evolution, with ion{He}{2} $lambda 4686/mathrm Hbeta > 0.5$. These planetary nebulae represent evolutionary phases preceeding and following those of the objects studied by Richer et al. (2008). Our sample of planetary nebulae with weak [ion{O}{3}]$lambda$5007 has a line width distribution similar to that of the expansion velocities of the envelopes of AGB stars, and shifted to systematically lower values as compared to the less evolved objects studied by Richer et al. (2008). The sample with strong ion{He}{2} $lambda 4686$ has a line width distribution indistinguishable from that of the more evolved objects from Richer et al. (2008), but a distribution in angular size that is systematically larger and so they are clearly more evolved. These data and those of Richer et al. (2008) form a homogeneous sample from a single Galactic population of planetary nebulae, from the earliest evolutionary stages until the cessation of nuclear burning in the central star. They confirm the long-standing predictions of hydrodynamical models of planetary nebulae, where the kinematics of the nebular shell are driven by the evolution of the central star.
We report the first estimate of the He abundance of the population of RR Lyrae stars in the Galactic bulge. This is done by comparing the recent observational data with the latest models. We use the large samples of ab type RR Lyrae stars found by OG LE IV in the inner bulge and by the VVV survey in the outer bulge. We present the result from the new models computed by Marconi et al. (2017), showing that the minimum Period for fundamental RR Lyrae pulsators depends on the He content. By comparing these models with the observations in a Period versus effective temperature plane, we find that the bulk of the bulge ab type RR Lyrae are consistent with primordial He abundance Y=0.245, ruling out a significant He-enriched population. This work demonstrates that the He content of the bulge RR Lyrae is different from that of the bulk of the bulge population as traced by the red clump giants, that appear to be significantly more He-rich.
Large pristine samples of red clump stars are highly sought after given that they are standard candles and give precise distances even at large distances. However, it is difficult to cleanly select red clumps stars because they can have the same T$_{ mathrm{eff}}$ and log $g$ as red giant branch stars. Recently, it was shown that the asteroseismic parameters, $rm{Delta}$P and $rm{Delta u}$, which are used to accurately select red clump stars, can be derived from spectra using the change in the surface carbon to nitrogen ratio ([C/N]) caused by mixing during the red giant branch. This change in [C/N] can also impact the spectral energy distribution. In this study, we predict the $rm{Delta}$P, $rm{Delta u}$, T$_{mathrm{eff}}$ and log $g$ using 2MASS, AllWISE, gaia, and Pan-STARRS data in order to select a clean sample of red clump stars. We achieve a contamination rate of $sim$20%, equivalent to what is achieved when selecting from T$_{mathrm{eff}}$ and log $g$ derived from low resolution spectra. Finally, we present two red clump samples. One sample has a contamination rate of $sim$ 20% and $sim$ 405,000 red clump stars. The other has a contamination of $sim$ 33% and $sim$ 2.6 million red clump stars which includes $sim$ 75,000 stars at distances $>$ 10 kpc. For |b|>30 degrees we find $sim$ 15,000 stars with contamination rate of $sim$ 9%. The scientific potential of this catalog for studying the structure and formation history of the Galaxy is vast given that it includes millions of precise distances to stars in the inner bulge and distant halo where astrometric distances are imprecise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا