ترغب بنشر مسار تعليمي؟ اضغط هنا

Executive Summary of the Workshop on Polarisation and Beam Energy Measurements at the ILC

151   0   0.0 ( 0 )
 نشر من قبل Daniela K\\\"afer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This note summarizes the results of the Workshop on Polarisation and Beam Energy Measurements at the ILC, held at DESY (Zeuthen) April 9-11 2008. The topics for the workshop included (i) physics requirements, (ii) polarised sources and low energy polarimetry, (iii) BDS polarimeters, (iv) BDS energy spectrometers, and (v) physics-based measurements of beam polarisation and beam energy from collider data. Discussions focused on the current ILC baseline programme as described in the Reference Design Report (RDR), which includes physics runs at beam energies between 100 and 250 GeV, as well as calibration runs on the Z-pole. Electron polarisation of P_e- >~ 80% and positron polarisation of P_e+ >~ 30% are part of the baseline configuration of the machine. Energy and polarisation measurements for ILC options beyond the baseline, including Z-pole running and the 1 TeV energy upgrade, were also discussed.



قيم البحث

اقرأ أيضاً

171 - Ties Behnke 2013
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using N iobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a push-pull configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.
101 - B. Aurand , I. Bailey , C. Bartels 2009
In this contribution accelerator solutions for polarized beams and their impact on physics measurements are discussed. Focus are physics requirements for precision polarimetry near the interaction point and their realization with polarized sources. B ased on the ILC baseline programme as described in the Reference Design Report (RDR), recent developments are discussed and evaluated taking into account physics runs at beam energies between 100 GeV and 250 GeV, as well as calibration runs on the Z-pole and options as the 1TeV upgrade and GigaZ.
The ILC accelerator parameters and detector concepts are still under discussion in the world-wide community. As will be shown, the performance of the BeamCal, the calorimeter in the very forward area of the ILC detector, is very sensitive to the beam parameter and crossing angle choices. We propose here BeamCal designs for a small (0 or 2 mrad) and large (20 mrad) crossing angles and report about the veto performance study done. As illustration, the influence of several proposed beam parameter sets and crossing-angles on the signal to background ratio in the stau search is estimated for a particular realization of the super-symmetric model.
76 - Khaled Alharbi 2019
The positron source of the International Linear Collider is based on a superconducting helical undulator passed by the high-energy electron beam to generate photons which hit a conversion target. Since the photons are circularly polarized the resulti ng positron beam is polarized. At ILC250, the full undulator is needed to produce the required number of positrons. To keep the power deposition in the undulator walls below the acceptable limit of 1W/m, photon masks must be inserted in the undulator line. The photon mask design requires a detailed study of the power deposition in the walls and masks. This paper describes the power deposition in the undulator wall due to synchrotron radiation.
55 - Khaled Alharbi 2018
Since the undulator wall is being bombarded by photon produced in the ILC helical undulator, masks were installed inside the undulator to protect the superconducting undulator as well as the vacuum. The photon energy spectrum was used to calculate th e incident power. HUSR software was used to simulate the photon energy spectrum per meter inside the undulator. The influence of adding masks inside the undulator on the photon polarisation and energy spectrum was also studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا