ﻻ يوجد ملخص باللغة العربية
We present a Galerkin-Collocation domain decomposition algorithm applied to the evolution of cylindrical unpolarized gravitational waves. We show the effectiveness of the algorithm in reproducing initial data with high localized gradients and in providing highly accurate dynamics. We characterize the gravitational radiation with the standard Newman-Penrose Weyl scalar $Psi_4$. We generate wave templates for both polarization modes, $times$ and $+$, outgoing and ingoing, to show how they exchange energy nonlinearly. In particular, considering an initially ingoing $times$ wave, we were able to trace a possible imprint of the gravitational analog of the Faraday effect in the generated templates.
We present a new computational framework for the Galerkin-collocation method for double domain in the context of ADM 3+1 approach in numerical relativity. This work enables us to perform high resolution calculations for initial sets of two arbitrary
General cylindrical waves are the simplest axisymmetrical gravitational waves that contain both $+$ and $times$ modes of polarization. In this paper, we have studied the evolution of general cylindrical gravitational waves in the realm of the charact
We present an implementation of the Galerkin-Collocation method to determine the initial data for non-rotating distorted three dimensional black holes in the inversion and puncture schemes. The numerical method combines the key features of the Galerk
We present a single domain Galerkin-Collocation method to calculate puncture initial data sets for single and binary, either in the trumpet or wormhole geometries. The combination of aspects belonging to the Galerkin and the Collocation methods toget
Using the Sparling form and a geometric construction adapted to spacetimes with a 2-dimensional isometry group, we analyse a quasi-local measure of gravitational energy. We then study the gravitational radiation through spacetime junctions in cylindr